scholarly journals Advanced optimization of gas turbine aero-engine transient performance using linkage-learning genetic algorithm: Part Ⅱ, optimization in flight mission and controller gains correlation development

Author(s):  
Yinfeng LIU ◽  
Soheil JAFARI ◽  
Theoklis NIKOLAIDIS
Author(s):  
Chengyu Zhang ◽  
Volker Gümmer

Abstract The growing demand for highly efficient, environmentally friendly aero-engines highlights the incorporation of recuperators into gas turbine systems, which is especially attractive for rotorcraft powerplants, as the majority of their mission time is spent at part load cruise power (typically above 60%) with the non-optimum specific fuel consumption (SFC) characteristic. In this work, a primary surface recuperator (PSR) for the 300kW-class rotorcraft powerplant is considered for optimization by using a Genetic Algorithm (GA). By the very nature of aero-engines application, two different objective optimizations are conducted, aimed at minimizing the recuperator weight or/and reducing pressure drop, maximizing recuperator effectiveness. The geometries of the surface plate remain constant, while three shape parameters work as variables for defined constraints. The optimization process proves that GA is an adequate tool in recuperator design optimization according to the specified objectives. Based on calculation results, potential recuperator designs for aero-engine application are suggested.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Author(s):  
S. James ◽  
M. S. Anand ◽  
B. Sekar

The paper presents an assessment of large eddy simulation (LES) and conventional Reynolds averaged methods (RANS) for predicting aero-engine gas turbine combustor performance. The performance characteristic that is examined in detail is the radial burner outlet temperature (BOT) or fuel-air ratio profile. Several different combustor configurations, with variations in airflows, geometries, hole patterns and operating conditions are analyzed with both LES and RANS methods. It is seen that LES consistently produces a better match to radial profile as compared to RANS. To assess the predictive capability of LES as a design tool, pretest predictions of radial profile for a combustor configuration are also presented. Overall, the work presented indicates that LES is a more accurate tool and can be used with confidence to guide combustor design. This work is the first systematic assessment of LES versus RANS on industry-relevant aero-engine gas turbine combustors.


2000 ◽  
Vol 123 (2) ◽  
pp. 258-265 ◽  
Author(s):  
D. A. Rowbury ◽  
M. L. G. Oldfield ◽  
G. D. Lock

An empirical means of predicting the discharge coefficients of film cooling holes in an operating engine has been developed. The method quantifies the influence of the major dimensionless parameters, namely hole geometry, pressure ratio across the hole, coolant Reynolds number, and the freestream Mach number. The method utilizes discharge coefficient data measured on both a first-stage high-pressure nozzle guide vane from a modern aero-engine and a scale (1.4 times) replica of the vane. The vane has over 300 film cooling holes, arranged in 14 rows. Data was collected for both vanes in the absence of external flow. These noncrossflow experiments were conducted in a pressurized vessel in order to cover the wide range of pressure ratios and coolant Reynolds numbers found in the engine. Regrettably, the proprietary nature of the data collected on the engine vane prevents its publication, although its input to the derived correlation is discussed. Experiments were also conducted using the replica vanes in an annular blowdown cascade which models the external flow patterns found in the engine. The coolant system used a heavy foreign gas (SF6 /Ar mixture) at ambient temperatures which allowed the coolant-to-mainstream density ratio and blowing parameters to be matched to engine values. These experiments matched the mainstream Reynolds and Mach numbers and the coolant Mach number to engine values, but the coolant Reynolds number was not engine representative (Rowbury, D. A., Oldfield, M. L. G., and Lock, G. D., 1997, “Engine-Representative Discharge Coefficients Measured in an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-99, International Gas Turbine and Aero-Engine Congress & Exhibition, Orlando, Florida, June 1997; Rowbury, D. A., Oldfield, M. L. G., Lock, G. D., and Dancer, S. N., 1998, “Scaling of Film Cooling Discharge Coefficient Measurements to Engine Conditions,” ASME Paper No. 98-GT-79, International Gas Turbine and Aero-Engine Congress & Exhibition, Stockholm, Sweden, June 1998). A correlation for discharge coefficients in the absence of external crossflow has been derived from this data and other published data. An additive loss coefficient method is subsequently applied to the cascade data in order to assess the effect of the external crossflow. The correlation is used successfully to reconstruct the experimental data. It is further validated by successfully predicting data published by other researchers. The work presented is of considerable value to gas turbine design engineers as it provides an improved means of predicting the discharge coefficients of engine film cooling holes.


1985 ◽  
Vol 107 (3) ◽  
pp. 411-418 ◽  
Author(s):  
M. M. Dede ◽  
M. Dogan ◽  
R. Holmes

The purpose of this paper is to establish a theoretical model to represent a sealed squeeze-film damper bearing and to assess it against results from a test rig, simulating the essential features of a medium-sized gas turbine aero engine.


Author(s):  
Joseph Shibu Kalloor ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar ◽  
K. Shankar

A comprehensive multi-objective optimisation methodology is presented and applied to a practical aero engine rotor system. A variant of Nondominated Sorting Genetic Algorithm (NSGA) is employed to simultaneously minimise the weight and unbalance response of the rotor system with restriction imposed on critical speed. Rayleigh beam is used in Finite Element Method (FEM) implemented in-house developed MATLAB code for analysis. The results of practical interest are achieved through bearing-pedestal model and eigenvalue based Rayleigh damping model. Pareto optimal solutions generated and best solution selected with the help of response surface approximation of the Pareto optimal front. The outcome of the paper is a minimum weight and minimum unbalance response rotor system which satisfied the critical speed constraints.


Author(s):  
Sascha Kaiser ◽  
Oliver Schmitz ◽  
Hermann Klingels

Abstract Recognizing the attention currently devoted to the environmental impact of aviation, this three-part publication series introduces two new aircraft propulsion concepts for the timeframe beyond 2030. Part one focuses on the steam injecting and recovering aero engine concept. This second part presents the free-piston composite cycle engine concept. A third publication, building upon those two concepts, presents the project which aims for demonstrating the proof of concept with numerical simulation and test-bench experiments up to a technology readiness level of three. The free-piston composite cycle engine concept is composed of a gas turbine topped with a free-piston system. The latter is a self-powered gas generator in which the internal combustion process drives an integrated air compressor. Here, several free-piston engines replace the high-pressure core of the gas turbine. Through the ability to work at much higher temperatures and pressures, the overall system efficiency can be increased significantly, and fuel burn as well as CO2 emissions reduce. The proposed free-piston composite cycle engine design is described in detail, and the sources of thermodynamic benefits are stated. Concrete engineering solutions consider the implementation into an aircraft. The free-piston design enables lower weight and size compared to a crankshaft-bound piston engine, as no mechanical transmission and lubrication system is required. The absence of a crankshaft and connecting rods eliminates reactive forces, reduces mechanical losses, and allows higher mean piston velocities. Facilitated through air lubrication, higher cylinder temperatures are viable. The reduction of heat losses enables cooling of the piston-cylinder with core fluid. The use of a sequential combustion chamber can enhance operability and tailor the production of NOx in low-altitude operation. A discussion of emissions affecting the environment shows the potential to reduce the climate impact of aviation.


Sign in / Sign up

Export Citation Format

Share Document