scholarly journals Stability characteristics and airworthiness requirements of blended wing body aircraft with podded engines

Author(s):  
Lixin Wang ◽  
Ning Zhang ◽  
Hailiang Liu ◽  
Ting Yue
Keyword(s):  
2019 ◽  
Vol 8 (4) ◽  
pp. 9538-9542

In vision of searching for the right Unmanned Aerial System (UAS) for a specific mission, there are multiple factors to be considered by the operator such as mission, endurance, type of payload and range of the telemetry and control. This research is focusing on extending control range of the UAS by using 4G-LTE network to enable beyond-line-of-sight flying for the commercial UAS. Major UAS such Global Hawk, Predator MQ-1 are able to fly thousands of kilometers by the use of satellite communication. However, the satellite communication annual license subscription can be very expensive. With this situation in mind, a new type of flight controller with 4G-LTE communication has been developed and tested. Throughout the research, blended-wing-body (BWB) Baseline B2S is used as the platform for technology demonstrator. Result from this analysis has proven that the proposed system is capable to control a UAS from as far as United Kingdom, with a latency less than 881 ms in average. The new added capability can potentially give the commercial UAS community a new horizon to be able to control their UAS from anywhere around the world with the availability of 4G-LTE connection


2021 ◽  
pp. 107131
Author(s):  
Yunlong Zheng ◽  
Qiulin Qu ◽  
Peiqing Liu ◽  
Xueliang Wen ◽  
Zhicheng Zhang

2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


Sign in / Sign up

Export Citation Format

Share Document