Investigation of Aerodynamic Characteristics of Blended-Wing-Body Aircraft Based on Cluster System

Author(s):  
Guoqing Zhang ◽  
Shu-xing Yang ◽  
Song-hai Xue
2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Wirachman Wisnoe ◽  
Rizal E.M. Nasir ◽  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Firdaus Muhammad

In this paper, a study of aerodynamic characteristics of UiTM's Blended-Wing-Body Unmanned Aerial Vehicle (BWB-UAV) Baseline-II in terms of side force, drag force and yawing moment coefficients are presented through Computational Fluid Dynamics (CFD) simulation. A vertical rudder is added to the aircraft at the rear centre part of the fuselage as yawing control surface. The study consists of varying the side slip angles for various rudder deflection angles and to plot the results for each aerodynamic parameter. The comparison with other yawing control surface for the same aircraft obtained previously are also presented. For validation purpose, the lift and drag coefficients are compared with the results obtained from wind tunnel experiments. 


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Pang Jung Hoe ◽  
Nik Ahmad Ridhwan Nik Mohd

The need for high performance and green aircraft has brought the blended wing (BWB) aircraft concept to the centre of interest for many researchers. BWB is a type of aircraft characterized by a complex blending geometry between fuselage and wing. Recently, many researches had been performed to unlock its aerodynamic complexity that is still not well understood. In this paper, aerodynamic characteristic of a baseline BWB configuration derived from simple conventional aircraft configuration was analysed using the Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) solver. The main objectives of this work are to predict the aerodynamic characteristics of the BWB concept at steady flight conditions and at various pitch angles. The results obtained are then compared against a simple conventional aircraft configuration (CAC). The results show that the BWB configuration used has 24% higher L/D ratio than the CAC. The increment to the L/D however is mainly due to lower drag than the improvement in the lift. 


2012 ◽  
Vol 225 ◽  
pp. 38-42
Author(s):  
Zurriati Mohd Ali ◽  
Wahyu Kuntjoro ◽  
Wisnoe Wirachman

This paper presents a study on the effect of canard setting angle on the aerodynamic characteristic of a Blended Wing Body (BWB). Canard effects to BWB aerodynamic characteristics are not widely investigated. Hence the focus of the study is to investigate the variations of lifts, drags and moments when the angles of attack are varied at different canard setting angles. Wind tunnel tests were performed on BWB aircraft with canard setting angles,  ranging from -20˚ to 20˚. Angles of attack,  were varied from -10˚ to 10˚. Aspect ratio and canard planform area were kept fixed. All tests were conducted in the subsonic wind tunnel at Universiti Teknologi MARA, at Mach number of 0.1. The streamlines flow, at the upper surface of the canard was visualized using mini tuft. Result shows that the lift coefficient does not change much with different canard setting angles. As expected, the lift coefficient increases with increasing angles of attack at any canard setting angle. In general, the moment coefficient increases as the canard setting angle is increased. The results obtained in this research will be of importance to the understanding of aerodynamic behavior of BWB employing canard in its configuration.


2021 ◽  
Author(s):  
Min-Sik Youn ◽  
Youn-Jea Kim

Abstract Demands of a modern aircraft regarding its aerodynamic performance and high efficiency are ever-growing. An S-shaped inlet, as known as a serpentine duct, plays a significant role in increasing fuel efficiency. Recently, the serpentine duct is commonly employed for military aircraft to block the front of the jet engine from radar. However, delivering a non-uniformly distorted flow to the engine face (aerodynamic interface plane, AIP) though a serpentine duct is inevitable due to the existence of flow separation and swirl flow in the duct. The effect of distortion is to cause the engine compressor to surge; thus, it may impact on the life-cycle of aircraft engine. In this study, aerodynamic characteristics of a serpentine duct mounted on a blended-wing-body (BWB) aircraft was thoroughly investigated to determine where and how the vortex flow was generated. In particular, both passive and active flow control were implemented at a place where the flow separation was occurred to minimize the flow distortion rate in the duct. The passive and active flow control systems were used with vortex generator (VG) vanes and air suctions, respectively. A pair of VG s have been made as a set, and 6 sets of VG in the serpentine duct. For the active flow control, 19 air suctions have been implemented. Both flow control devices have been placed in three different locations. To evaluate the performance of flow control system, it is necessary to quantify the flow uniformity at the AIP. Therefore, coefficient of distortion, DC(60) was used as the quantitative measure of distortion. Also, change in DC(60) value while the BWB aircraft is maneuvering phase was analyzed.


Author(s):  
Masashi Kashitani ◽  
Yoshie Suganuma ◽  
Hisashi Date ◽  
Shinichiro Nakao ◽  
Yoshihiro Takita ◽  
...  

Author(s):  
Peifeng Li ◽  
Binqian Zhang ◽  
Yujin Tao ◽  
Zhenli Chen ◽  
Dong Li

To design the center-body airfoil of a blended wing body configuration, the aerodynamic effects of the symmetrical airfoil, trailing-edge reflexed airfoil, leading-edge loaded airfoil and leading-edge loaded plus trailing-edge reflexed airfoil are investigated based on the constraints of system arrangement. A 150-passenger BWB configuration is studied; for a center-body with symmetrical airfoil, the larger outer-wing geometrical twist should be used to fulfill the positive zero-lift pitching moment according to the design requirements of longitudinal static stability, however, lift to drag ratio shows a big decrease. For leading-edge loaded airfoil, it is difficult to achieve a positive zero-lift pitching moment because of the platform limitation. For trailing-edge reflexed airfoil or leading-edge loaded plus trailing-edge reflexed airfoil, it is easy to achieve ideal design results when reasonably designing the leading-edge loading and trailing-edge unloading. The application of a blended wing body UAV shows that the loss of aerodynamic characteristics is small when adopting the "eagle hook" stealth leading edge that has the characteristics of leading edge loading.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 37
Author(s):  
A M Ahmad ◽  
R E M Nasir ◽  
Z A A Latif ◽  
W Kuntjoro ◽  
W Wisnoe ◽  
...  

Baseline 7 Blended Wing-Body design is introduced to study the behaviour of the control surfaces, given four elevons without vertical stabilizer and wingtip. The objective of the paper is to obtain an aerodynamic characteristic of a cranked planform blended wing-body aircraft. The airfoil used for the entire body is NACA 2412, which is selected for ease of fabrication process. The wingspan of the model is 1.4 m with 0.2 m thickness. The sweep angle of the model is fixed to 400. The wingspan area is calculated at 0.405 m2. The experiment is conducted at UTM-LST Wind Tunnel, AEROLAB, Skudai, Johor with test wind speed of 15 m/s. The maximum lift-to-drag ratio for the model is found to be around 21.9, which is better than many conventional aircraft. Nonetheless, the parabolic regression made to the drag versus lift plot only yields maximum lift-to-drag ratio of 10.0. The value of drag coefficient at zero lift is 0.012 while the maximum lift coefficient found is at 0.65 at 150 angle of attack. The lift-to-drag ratio improves 38.3% from 15.9 in the previously-published design. The neutral point is found to be located at 30.6% of the mean geometric chord in front of the wind tunnel model reference center or about 0.398 m from the nose of the 0.63 m long aircraft model or at 63.1% of aircraft length from the nose.  


Author(s):  
Md. Akhtar khan ◽  
Chinmaya padhy ◽  
Ch. Sanjay

An experimental aerodynamic analysis is performed to obtain aerodynamic characteristics and performance of a blended wing-body aircraft (BWB) using Low Speed Wind Tunnel. The BWB design concept is a revolutionary way of understanding the hike of fuel cost, increase in air travelers and environmental concern. Recognizing the potential of the aircraft an experimental analysis is conducted on BWB to understand aerodynamic performance parameters like lift coefficient (CL), drag coefficient (CD) and the Lift-to-Drag (L/D) ratio .The aluminium BWB model is manufactured using CNC machine and is tested in Wind tunnel at different angle of attack varying from 0° to 16° at speed of 12 m/s ,25 m/s and 35 m/s velocity. The present BWB UAV design has achieved an unprecedented capability in terms of sustainability of flight at high angle of attack, low parasite drag coefficient and decent maximum lift coefficient. This study indicates some significant benefits for the BWB relative to the conventional aircraft configuration. KEYWORDS: Blended Wing Body (BWB), Aerodynamics, Unmanned Aerial Vehicle (UAV), Wind Tunnel


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Kelei Wang ◽  
Zhou Zhou

This paper describes the aerodynamic design and assessment of a blended-wing–body (BWB) configuration under the distributed electric propulsion (DEP) installation constraints. The aerodynamic design rationale and process is described, as well as how the DEP system is considered and simplified in the optimization design process. Both the BWB configuration and the DEP induced effects are numerically simulated and analyzed using the Reynolds Averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) flow solvers. To further demonstrate the feasibility and reliability of the design approach, the wind tunnel tests of a scaled model of the designed BWB configuration are carried out, and both the aerodynamic characteristics and the BWB surface flow are measured and analyzed. The results indicate the reliability and feasibility of the optimization design method introduced in this paper.


Sign in / Sign up

Export Citation Format

Share Document