Measuring Absolute Adsorption in Porous Rocks Using Oscillatory Motions of a Spring-Mass System

Author(s):  
Younki Cho ◽  
Ryan Lo ◽  
Keerthana Krishnan ◽  
Xiaolong Yin ◽  
Hossein Kazemi
2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


2021 ◽  
Vol 11 (6) ◽  
pp. 2495
Author(s):  
Belén Ferrer ◽  
María-Baralida Tomás ◽  
David Mas

Some materials undergo hygric expansion when soaked. In porous rocks, this effect is enhanced by the pore space, because it allows water to reach every part of its volume and to hydrate most swelling parts. In the vicinity, this enlargement has negative structural consequences as adjacent elements support some compressions or displacements. In this work, we propose a normalized cross-correlation between rock surface texture images to determine the hygric expansion of such materials. We used small porous sandstone samples (11 × 11 × 30 mm3) to measure hygric swelling. The experimental setup comprised an industrial digital camera and a telecentric objective. We took one image every 5 min for 3 h to characterize the whole swelling process. An error analysis of both the mathematical and experimental methods was performed. The results showed that the proposed methodology provided, despite some limitations, reliable hygric swelling information by a non-contact methodology with an accuracy of 1 micron and permitted the deformation in both the vertical and horizontal directions to be explored, which is an advantage over traditional linear variable displacement transformers.


1979 ◽  
Vol 165 (2) ◽  
pp. 193-199 ◽  
Author(s):  
G. Bologna ◽  
F. Celani ◽  
B. Caporaletti ◽  
A. Codino ◽  
B. D'Ettore Piazzoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document