Spectral, NLO, thermal, hardness and SEM studies of phosphate doped bis-urea oxalic acid crystals for laser applications

Author(s):  
S Vasumathi ◽  
H Johnson Jeyakumar ◽  
P Selvarajan
Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
Waykin Nopanitaya ◽  
Raeford E. Brown ◽  
Joe W. Grisham ◽  
Johnny L. Carson

Mammalian endothelial cells lining hepatic sinusoids have been found to be widely fenestrated. Previous SEM studies (1,2) have noted two general size catagories of fenestrations; large fenestrae were distributed randomly while the small type occurred in groups. These investigations also reported that large fenestrae were more numerous and larger in the endothelial cells at the afferent ends of sinusoids or around the portal areas, whereas small fenestrae were more numerous around the centrilobular portion of the hepatic lobule. It has been further suggested that under some physiologic conditions small fenestrae could fuse and subsequently become the large type, but this is, as yet, unproven.We have used a reproducible experimental model of hypoxia to study the ultrastructural alterations in sinusoidal endothelial fenestrations in order to investigate the origin of occurrence of large fenestrae.


1992 ◽  
Vol 103 (5-6) ◽  
pp. 339-343
Author(s):  
J. V. Subba Rao ◽  
S. R. Shanmukha Rao
Keyword(s):  

TAPPI Journal ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 21-28 ◽  
Author(s):  
CARL HOUTMAN ◽  
ERIC HORN

Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no significant change in strength properties. Adding bisulfite did not significantly increase the brightness of the spruce pulp. For pine, the optimum treatment was a moderate level of oxalic acid, which resulted in 34% energy savings and an increase in strength properties. For all of these treatments 1–3 w/w % carbohydrates were recovered, which can be fermented to produce ethanol. The extract sugar solution contained significant quantities of arabinose.


Author(s):  
G. Suresh ◽  
K. Sambath Kumar ◽  
P. Ambalavanan ◽  
P. Kumaresan

Zinc Thiourea Sulphate (ZTS), crystal is a magnificent metal natural compound, which consolidates the upsides of both natural and inorganic materials when contrasted and other customary non-linear optical materials and in this way can be utilized as a part of a more extensive scope of uses. Late endeavors at delivering new recurrence transformation materials have concentrated essentially on expanding the extent of the NLO properties that can recurrence twofold low pinnacle control sources, for example, diode lasers.  The thermo gravimetric examination (TGA) and differential warm investigation (DTA) were completed utilizing Seiko warm analyzer at warming rate 20°C/min in air to decide the warm dependability of the compound. ZTS crystals were developed by moderate cooling procedure. This empowers the development of mass gems along all the three bearings at an ideal pH. FTIR examines demonstrate that in the spectra of ZTS there is a move in the recurrence band in the low-recurrence district which uncovers that thiourea shapes sulfur-to-zinc securities in the ZTS crystals. The stability and charge delocalization of the molecule were also studied by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer takes place within the molecule. Molecular electrostatic potential has been analyzed.  The developments try in extensive scale with this enhanced pH qualities is required to yield mass crystal appropriate for laser combination tests and SHG device applications.


Sign in / Sign up

Export Citation Format

Share Document