Research and application of coupled two-dimensional asymmetric bistable stochastic resonance system

Author(s):  
Li Fang He ◽  
Wei Zhu ◽  
Gang Zhang
Author(s):  
Chunbo Ma ◽  
Jun Ao

How to extract useful information from noised image is always an important issue for image processing. Many methods have been proposed in image enhancement field. However, in these methods the noise is usually considered as harmful and should be removed as much as possible. Stochastic resonance is a very different method, in which the noise is regarded as a driver to push the stochastic resonance system to output enhanced image. In this paper, the cumulative gain is introduced and the sequence average is used to enhance the original image information which hidden in a noised image sequence produced by bistable stochastic resonance. We present the one-dimensional and two-dimensional stochastic resonance methods and discuss their performance in this paper. Experiments illustrate that the one-dimensional average stochastic resonance has the best performance considering the indicator PSNR and SSIM. Compared with traditional filters such as median and Wiener filters, the proposed methods have significant advantages.


2021 ◽  
Author(s):  
Zhongyan Liu ◽  
Yujing Xu ◽  
Wang Liu ◽  
Qi Zhang ◽  
Jiafei Hu ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 040503 ◽  
Author(s):  
Yong-Hui Zhou ◽  
Xue-Mei Xu ◽  
Lin-Zi Yin ◽  
Yi-Peng Ding ◽  
Jia-Feng Ding ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lina He ◽  
Chuan Jiang

The stochastic resonance system has the advantage of making the noise energy transfer to the signal energy. Because the existing stochastic resonance system model has the problem of poor performance, an asymmetric piecewise linear stochastic resonance system model is proposed, and the parameters of the model are optimized by a genetic algorithm. The signal-to-noise ratio formula of the model is derived and analyzed, and the theoretical basis for better performance of the model is given. The influence of the asymmetric coefficient on system performance is studied, which provides guidance for the selection of initial optimization range when a genetic algorithm is used. At the same time, the formula is verified and analyzed by numerical simulation, and the correctness of the formula is proved. Finally, the model is applied to bearing fault detection, and an adaptive genetic algorithm is used to optimize the parameters of the system. The results show that the model has an excellent detection effect, which proves that the model has great potential in fault detection.


2020 ◽  
Vol 10 (6) ◽  
pp. 2048 ◽  
Author(s):  
Yang Jiang ◽  
Bo He ◽  
Jia Guo ◽  
Pengfei Lv ◽  
Xiaokai Mu ◽  
...  

The autonomous underwater vehicle (AUV) is mainly used in the development and exploration of the ocean. As an important module of the AUV, the actuator plays an important role in the normal execution of the AUV. Therefore, the fault diagnosis of the actuator is particularly important. At present, the research on the strong faults, such as the winding of the actuator, has achieved good results, but the research on the weak fault diagnosis is relatively rare. In this paper, the tri-stable stochastic resonance model is analyzed, and the ant colony tri-stable stochastic resonance model is used to diagnose the weak fault. The system accurately diagnoses the fault of the actuator collision and verifies the adaptive tri-stable stochastic resonance system. This model has better diagnostic results than the bi-stable stochastic resonance system.


2020 ◽  
pp. 2150004
Author(s):  
Gang Zhang ◽  
Chuan Jiang ◽  
Tian Qi Zhang

Stochastic resonance systems have the advantages of converting noise energy into signal energy, and have great potential in the field of signal detection and extraction. Aiming at the problems of the performance of classical stochastic resonance system whose model is not perfect enough and the correlation coefficients between parameters is too large to be optimized by algorithm, then a novel model of the tristable potential stochastic resonance system is proposed. The output SNR formula of the model is derived and analyzed, and the influence of its parameters on the model is clarified. Compared with the piecewise linear model by numerical simulation, the correctness of the formula and the superiority of the model are verified. Finally, the model and the classical tristable model are applied to bearing fault detection in which the genetic algorithm is used to optimize the parameters of the two systems. The results show that the model has better detection effects, which prove that the model has a strong potential in the field of signal detection.


Sign in / Sign up

Export Citation Format

Share Document