Su.67. Monocytes Modulate T-Cell Immune Responses in a Pge2-Cox-2 Dependent Manner and Induce Foxp3+-Cd4+- T-Cells

2006 ◽  
Vol 119 ◽  
pp. S183
Author(s):  
Sheraz Yaqub ◽  
Tone Bryn ◽  
Milada Mahic ◽  
Einar Aandahl ◽  
Kjetil Tasken
2007 ◽  
Vol 20 (2) ◽  
pp. 235-245 ◽  
Author(s):  
T. Bryn ◽  
S. Yaqub ◽  
M. Mahic ◽  
K. Henjum ◽  
E. M. Aandahl ◽  
...  

Gene Therapy ◽  
2008 ◽  
Vol 15 (9) ◽  
pp. 677-687 ◽  
Author(s):  
D Kim ◽  
A Monie ◽  
L He ◽  
Y-C Tsai ◽  
C-F Hung ◽  
...  

Gene Therapy ◽  
2008 ◽  
Vol 15 (9) ◽  
pp. 702-702
Author(s):  
D Kim ◽  
A Monie ◽  
L He ◽  
Y-C Tsai ◽  
C-F Hung ◽  
...  

2004 ◽  
Vol 200 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Audrey L. Kinter ◽  
Margaret Hennessey ◽  
Alicia Bell ◽  
Sarah Kern ◽  
Yin Lin ◽  
...  

Human immunodeficiency virus (HIV) disease is associated with loss of CD4+ T cells, chronic immune activation, and progressive immune dysfunction. HIV-specific responses, particularly those of CD4+ T cells, become impaired early after infection, before the loss of responses directed against other antigens; the basis for this diminution has not been elucidated fully. The potential role of CD25+CD4+ regulatory T cells (T reg cells), previously shown to inhibit immune responses directed against numerous pathogens, as suppressors of HIV-specific T cell responses was investigated. In the majority of healthy HIV-infected individuals, CD25+CD4+ T cells significantly suppressed cellular proliferation and cytokine production by CD4+ and CD8+ T cells in response to HIV antigens/peptides in vitro; these effects were cell contact dependent and IL-10 and TGF-β independent. Individuals with strong HIV-specific CD25+ T reg cell function in vitro had significantly lower levels of plasma viremia and higher CD4+: CD8+ T cell ratios than did those individuals in whom this activity could not be detected. These in vitro data suggest that CD25+CD4+ T reg cells may contribute to the diminution of HIV-specific T cell immune responses in vivo in the early stages of HIV disease.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3905-3905
Author(s):  
Bernd Jahrsdoerfer ◽  
Karen Dahlke ◽  
Magdalena Hagn ◽  
Kai Sontheimer ◽  
Thamara Beyer ◽  
...  

Abstract Abstract 3905 Immune regulation is central for the development of an efficient cellular immune response. Both Treg cells and plasmacytoid DC can suppress T cell proliferation in a granzyme B (GzmB)-dependent and perforin-independent manner. In the present study we found that, depending on stimulation with interleukin (IL-) 21, B cells (BC) can also express GzmB and effectively suppress T cell proliferation. GzmB expression in BC is enhanced by BC receptor engagement, and is suppressed by CD40 ligation. Since CD4+ T cells are a main source of IL-21, we tested whether they can induce GzmB in BC. We found that incompletely activated CD4+ T cells, but not fully activated T cells induce GzmB in co-cultured BC. Using confocal microscopy, we showed that BC-derived GzmB is enzymatically active and that GzmB+ BC transfer GzmB to CD4+ T cells. Furthermore, GzmB+ BC decreased CD4+ T cell expression of the TCR-zeta chain, a GzmB target, which is required for T cell proliferation. Our results suggest BC may regulate cellular adaptive immune responses by Treg cell-like mechanisms. Inhibition of BC-derived GzmB may represent a novel strategy to induce more effective and comprehensive cellular immune responses. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Li ◽  
Hongbin Si ◽  
Shu-Wei Wu ◽  
Jonatan Orangel Mendez ◽  
Dante Zarlenga ◽  
...  

AbstractIL-10 is a master regulator of immune responses, but its cellular source and function in cattle during the initial phase of immune priming have not been well established. Despite a massive B cell response in the abomasal draining lymph nodes in Ostertagia ostertagi (OO)-infected cattle, protective immunity is slow to develop, and partial protection requires years of repeated exposure. In addressing this problem, our initial hypothesis was that B cells produce IL-10 that downregulates the host protective immune response. However, our results showed that neutrophils made up the majority of IL-10-producing cells in circulation and in secondary lymphoid tissues, particularly the spleen (80%). Conversely, IL-10-producing B cells were rare. In addition, approximately 10% to 20% of the neutrophils in the blood and spleen expressed MHC II and were IL-10 negative, suggesting that neutrophils could also participate in antigen presentation. In vitro investigation of bovine neutrophils revealed that exposure thereof to OO extract increased IL-10 and MHC II expression in these cells in a dose-dependent manner, consistent with IL-10+/MHC II+ neutrophils detected in cattle shortly after experimental OO infection. Co-culture of untreated neutrophils with anti-CD3 antibody (Ab)-stimulated CD4+ T cells led to enhanced T cell activation; also, IL-10 depletion with neutralizing Ab enhanced the stimulatory function of neutrophils. OO extract depressed neutrophil stimulation of CD4+ T cells in the presence of IL-10-neutralizing Ab, suggesting that OO utilizes both IL-10-dependent and independent mechanisms to manipulate the bovine immune response. Finally, contact and viability were required for T cell-stimulatory neutrophil function. This report, to the best of our knowledge, is the first to demonstrate that neutrophil-derived IL-10 is directly involved in T cell regulation in cattle. Our data suggest that neutrophils and neutrophil-derived IL-10 are co-opted by nematode parasites and other pathogens to attenuate host immune responses and facilitate pathogen survival.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3322-3322
Author(s):  
Hideaki Yoshimura ◽  
Yukie Tsubokura ◽  
Masaaki Hotta ◽  
Atsushi Satake ◽  
Tomoki Ito ◽  
...  

Abstract Semaphorins, originally identified as repulsive axon-guidance factors that participate in neuronal development. Several semaphorins are involved in various phases of immune responses, as has been shown recently. Semaphorin4A (Sema4A), a class IV transmembrane semaphorin, is preferentially expressed in dendritic cells (DCs) and Th1 cells. Previous studies suggested that Sema4A is involved in Ag-specific T cell priming, and in Th1 cell and Th17 cell differentiation. Additionally, Sema4A is required for the stability and function of Tregs. However, the role of Sema4A in alloimmune responses remains to be elucidated. In this study, we examined the contribution of Sema4A to T cell immune responses in the context of allogeneic hematopoietic stem cell transplantation (allo-HCT). To test the role of Sema4A in T cell proliferation, we performed in vitro T cell proliferation assay using dendritic cells harvested from wild-type or Sema4A-KO mice. Conventional CD4+T cells cocultured with DCs harvested from wild-type and Sema4A-KO mice proliferated equally in the presence of anti-CD3 antibody. In contrast, anti-CD3-induced proliferation of Tregs cocultured with DCs harvested from Sema4A-KO mice was attenuated compared to Tregs cocultured with DCs harvested from wild-type mice, suggesting that Sema4A is required for maximum proliferation of Tregs. We next investigated the effects of Sema4A deficiency in acute GVHD. We employed a murine acute GVHD model (B6→BALB/c) and monitored every day for survival. Body weight was assessed 2-3 times per week. First, to investigate the role of host Sema4A, lethally irradiated wild-type and Sema4A-KO mice were injected with T cell-depleted bone marrow cells and T cells isolated from wild-type B6. Sema4A-KO host mice developed significantly higher mortality compared to wild-type host mice (p<0.001) (Figure). On day 7 after allo-HCT, the proportion of Tregs in the spleen were significantly decreased in Sema4A-KO host mice compared to wild-type host mice (p<0.05). Both donor-derived preexisting natural Tregs and inducible Tregs in Sema4A-KO host mice were significantly decreased compared to wild-type host mice, although relatively less in inducible Tregs. We investigated the production of proinflammatory cytokines (IFN-g, IL-17, IL-4 and IL-13) of T cells in the spleen by intracellular cytokine staining. The proportion of IL-17+CD4+ T cells in Sema4A-KO host was slightly but not significantly decreased compared to wild-type host, whereas similar proportion of IFN-g+CD4+T cells was observed in Sema4A-KO and wild-type host mice. In contrast, the proportion of IL-4+CD4+ T cells in Sema4A-KO host was significantly increased in Sema4A-KO host mice compared to wild-type host mice, suggesting Sema4A deficiency skewed cytokine polarization of T cells after allo-HCT. Subsequently, we used Sema4A-KO and wild-type B6 mice donor to investigate the role of donor-derived Sema4A. Host mice transplanted from Sema4A-KO donor developed comparable mortality with host mice transplanted with wild-type donor, suggesting that donor-derived Sema4A does not play an important role in controlling graft versus host reactions in this model. Together, these results suggest that Sema4A contributes to Treg maintenance and the regulation of T cell responses after allo-HCT, which may have clinical implications for the novel approach in the treatment and protection of GVHD. Figure. Figure. Disclosures Ito: Bristol-Myers Squibb: Honoraria, Research Funding; Takeda: Honoraria; Novartis Pharma: Honoraria; Pfizer: Honoraria; Mundipharma: Honoraria; Celgene: Honoraria.


Author(s):  
Hachemi Kadri ◽  
Taher E. Taher ◽  
Qin Xu ◽  
Richard T. Bryan ◽  
Benjamin E. Willcox ◽  
...  

We previously reported the application of the aryloxy triester phosphoramidate prodrug technology to the phosphoantigen (E)-4-hydroxybut-2-enyl phosphate (HMBP). Although these prodrugs exhibited potent activation of Vγ9/Vδ2 T‐cell immune responses, their stability was low due to the rapid cleavage of the -O-P- bond. To address this, we herein report the application of the same prodrug strategy to two HMBP phosphonates, which have stable -CH2-P- or -CF2-P- bonds. These HMBP phosphonate prodrugs, phosphonamidates, exhibited excellent serum stability and potent activation of Vgama9/Vdelta2 T‐cells making them attractive compounds for further development as potential immunotherapeutics.


2018 ◽  
Author(s):  
Hachemi Kadri ◽  
Taher E. Taher ◽  
Qin Xu ◽  
Richard T. Bryan ◽  
Benjamin E. Willcox ◽  
...  

We previously reported the application of the aryloxy triester phosphoramidate prodrug technology to the phosphoantigen (E)-4-hydroxybut-2-enyl phosphate (HMBP). Although these prodrugs exhibited potent activation of Vγ9/Vδ2 T‐cell immune responses, their stability was low due to the rapid cleavage of the -O-P- bond. To address this, we herein report the application of the same prodrug strategy to two HMBP phosphonates, which have stable -CH2-P- or -CF2-P- bonds. These HMBP phosphonate prodrugs, phosphonamidates, exhibited excellent serum stability and potent activation of Vgama9/Vdelta2 T‐cells making them attractive compounds for further development as potential immunotherapeutics.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2570-2577 ◽  
Author(s):  
John Stagg ◽  
Sandra Pommey ◽  
Nicoletta Eliopoulos ◽  
Jacques Galipeau

AbstractSeveral studies have demonstrated that marrow stromal cells (MSCs) can suppress allogeneic T-cell responses. However, the effect of MSCs on syngeneic immune responses has been largely overlooked. We describe here that primary MSCs derived from C57BL/6 mice behave as conditional antigen-presenting cells (APCs) and can induce antigen-specific protective immunity. Interferon gamma (IFNγ)-treated C57BL/6 MSCs, but not unstimulated MSCs, cocultured with ovalbumin-specific major histocompatibility (MHC) class II-restricted hybridomas in the presence of soluble ovalbumin-induced significant production of interleukin-2 (IL-2) in an antigen dose-dependent manner (P < .005). IFNγ-treated MSCs could further activate in vitro ovalbumin-specific primary transgenic CD4+ T cells. C57BL/6 MSCs, however, were unable to induce antigen cross-presentation via the MHC class I pathway. When syngeneic mice were immunized intraperitoneally with ovalbumin-pulsed IFNγ-treated MSCs, they developed antigen-specific cytotoxic CD8+ T cells and became fully protected (10 of 10 mice) against ovalbumin-expressing E.G7 tumors. Human MSCs were also studied for antigen-presenting functions. IFNγ-treated DR1-positive human MSCs, but not unstimulated human MSCs, induced significant production of IL-2 when cocultured with DR1-restricted influenza-specific humanized T-cell hybridomas in the presence of purified influenza matrix protein 1. Taken together, our data strongly suggest that MSCs behave as conditional APCs in syngeneic immune responses. (Blood. 2006;107:2570-2577)


Sign in / Sign up

Export Citation Format

Share Document