Nonlinear interactions of high-frequency oscillations in the human somatosensory system

2008 ◽  
Vol 119 (11) ◽  
pp. 2647-2657 ◽  
Author(s):  
U. Jaros ◽  
B. Hilgenfeld ◽  
S. Lau ◽  
G. Curio ◽  
J. Haueisen
2005 ◽  
Vol 36 (4) ◽  
pp. 278-284 ◽  
Author(s):  
Hitoshi Mochizuki ◽  
Yoshikazu Ugawa

The recent revival of interest in high-frequency oscillation (HFO) is triggered by getting an opportunity to noninvasively monitor the timing of highly synchronized and rapidly repeating population spikes generated in the human somatosensory system. HFOs could be recorded from brainstem, cuneothalamic relay neurons, thalamus, thalamocortical radiation, thalamocortical terminals and cortex with deep brain or surface electrodes, or with magnetoencephalography. Here we briefly review the HFOs at each level of somatosensory pathways. HFOs recorded at brainstem might be produced by volume conduction from oscillations of the medial lemniscus. Thalamic HFOs at around 1000 Hz frequency would be generated within the somatosensory thalamus. Cortical HFOs would be generated by at least a few different mechanisms, thalamocortical projection terminals, interneurons and pyramidal cells of the primary sensory cortex. HFOs have been studied in several ways: their modulation by arousal changes, movements or drugs, their recovery function, effects of transcranial magnetic stimulation on them and also their changes in patients with various neurological diseases.


Epilepsia ◽  
2021 ◽  
Author(s):  
Nicole E. C. Klink ◽  
Willemiek J. E. M. Zweiphenning ◽  
Cyrille H. Ferrier ◽  
Peter H. Gosselaar ◽  
Kai J. Miller ◽  
...  

Author(s):  
Lotte Noorlag ◽  
Maryse A. van 't Klooster ◽  
Alexander C. van Huffelen ◽  
Nicole E.C. van Klink ◽  
Manon J.N.L. Benders ◽  
...  

2017 ◽  
Vol 130 ◽  
pp. 21-26 ◽  
Author(s):  
Laura Uva ◽  
Davide Boido ◽  
Massimo Avoli ◽  
Marco de Curtis ◽  
Maxime Lévesque

1989 ◽  
Vol 63 (7) ◽  
pp. 44S-46S ◽  
Author(s):  
L. FREITAG ◽  
J. BREMME ◽  
M. SCHROER

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Musa Ozturk ◽  
Ashwin Viswanathan ◽  
Sameer A. Sheth ◽  
Nuri F. Ince

AbstractDespite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson’s disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130–180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.


Sign in / Sign up

Export Citation Format

Share Document