Targeting the Cell Cycle Regulated Cdc7 Kinase Pathway as a Novel Therapeutic Approach for Hematologic Malignancies

2014 ◽  
Vol 14 ◽  
pp. S157-S158
Author(s):  
Ruth Santos ◽  
David Shum ◽  
Michael Churchill ◽  
Siddhartha Mukherjee ◽  
Renier J. Brentjens ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2668-2668
Author(s):  
Mark G. Frattini ◽  
David Shum ◽  
Kristen M O’Dwyer ◽  
Renier J. Brentjens ◽  
Ray Yeh ◽  
...  

Abstract Cdc7 is a heterodimeric serine/threonine protein kinase that is a key regulator in the process of initiation of DNA replication and the G1 to S phase transition. Both the kinase and its known substrates are over-expressed in the majority of human cancers. As a result of the recent progress in the areas of pharmacogenetics and high throughput screening technology, identifying specific small molecule inhibitors of cell cycle regulated protein kinases has provided a means not only to study these signal transduction pathways but also to identify potential novel therapeutic agents. To this end, we have developed an assay for Cdc7 kinase inhibitory activity using a highthroughput screening (HTS) approach, screening over 250,000 natural and synthetic small molecules. As a result, we have identified and confirmed seventeen compounds, representing nine different chemical scaffolds, with Cdc7 kinase inhibitory activity. Based on potency, we selected the lead compound (CKI-7) which was further characterized using kinase profiling, microarray experiments, and standard cell based cytotoxicity assays. These latter studies demonstrated that CKI-7 induced cytotoxicity of established leukemia and lymphoma cell lines in culture with inhibitory concentrations (IC50s) in the low nanomolar range. Significantly, CKI-7 likewise induced cytotoxicity of MDR1 overexpressing cell lines with similar IC50s, demonstrating that this novel compound can overcome a major mechanism of chemotherapy resistence in human tumor cells. We additonally demonstrate that CKI-7 induces cytotoxicity of patient-derived primary acute leukemia tumor cells (both chemotherapy naïve and relapsed/refractory samples) in vitro at similarly low nanomolar concentrations. In vivo dose-dependent anti-tumor activity of CKI-7 was subsequently demonstrated in a SCID-Beige mouse systemic tumor model utilzing a recently isolated Philadelphia chromosome positive acute lymphoblastic leukemia cell line (PhALL3.1). Standard cell cycle synchronization studies established that exposure to CKI-7 results in cell cycle dependent caspase 3 activation and apoptotic cell death. This cell death is the direct result of Cdc7 kinase inhibition by CKI-7 as demonstrated using a substrate biomarker assay. In conclusion, our data confirm that Cdc7 is a new promising target for cancer therapy, and that CKI-7, a selective small molecule inhibitor of this enzyme, is an equally promising novel cancer therapeutic agent.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keisuke Enomoto ◽  
Fuyuki Sato ◽  
Shunji Tamagawa ◽  
Mehmet Gunduz ◽  
Naoyoshi Onoda ◽  
...  

Abstract A novel therapeutic approach is urgently needed for patients with anaplastic thyroid cancer (ATC) due to its fatal and rapid progress. We recently reported that ATC highly expressed MYC protein and blocking of MYC through its selective inhibitor, JQ1, decreased ATC growth and improved survival in preclinical models. One of the important roles of MYC is regulation of L-neutral amino acid transporter 1 (LAT1) protein and inhibition of LAT1 would provide similar anti-tumor effect. We first identified that while the human ATC expresses LAT1 protein, it is little or not detected in non-cancerous thyroidal tissue, further supporting LAT1 as a good target. Then we evaluated the efficacy of JPH203, a LAT1 inhibitor, against ATC by using the in vitro cell-based studies and in vivo xenograft model bearing human ATC cells. JPH203 markedly inhibited proliferation of three ATC cell lines through suppression of mTOR signals and blocked cell cycle progression from the G0/G1 phase to the S phase. The tumor growth inhibition and decrease in size by JPH203 via inhibition of mTOR signaling and G0/G1 cell cycle associated proteins were further confirmed in xenograft models. These preclinical findings suggest that LAT1 inhibitors are strong candidates to control ATC, for which current treatment options are highly limited.


2010 ◽  
Vol 49 (05) ◽  
pp. N41-N43
Author(s):  
T. Winder ◽  
A. Schuster ◽  
A. Becherer ◽  
K. Gasser ◽  
A. De Vries ◽  
...  

2017 ◽  
Author(s):  
Maximilian Bielohuby ◽  
Surya Prakash ◽  
Bodo Brunner ◽  
Anja Pfenninger ◽  
Ulrich Werner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document