Inhibition of B-Catenin and Bcr-Abl Tyrosine Kinase Synergistically Targets Blast Crisis CML Cells and Stem/Progenitor Cells In Vitro and In Vivo

2016 ◽  
Vol 16 ◽  
pp. S63-S64
Author(s):  
Bing Carter ◽  
Hongsheng Zhou ◽  
Po Mak ◽  
Hong Mu ◽  
Duncan Mak ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


1994 ◽  
Vol 14 (5) ◽  
pp. 2883-2894 ◽  
Author(s):  
B J Mayer ◽  
D Baltimore

We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 761-761 ◽  
Author(s):  
Shinya Kimura ◽  
Hidekazu Segawa ◽  
Junya Kuroda ◽  
Takeshi Yuasa ◽  
Taira Maekawa

Abstract Imatinib mesylate (also known as STI-571 and Gleevec) has drastically changed the treatment of Philadelphia chromosome positive (Ph+) leukemias. However, the resistance to imatinib has frequently been reported, particularly in patients with advanced-stage disease. A novel orally bioavailable inhibitor of the ABL tyrosine kinase (TK) named CNS-9 was developed from the 2-(phenylamino)pyrimidine class to overcome resistance mechanisms of imatinib. Inhibition of TK phosphorylation (IC50) on wild type (wt) BCR/ABL in 293T cell line by CNS-9 was 22nM, which was 2-log more potent than imatinib. Importantly, CNS-9 inhibited TK phosphorylation of E255K mutant BCR/ABL with IC50 of 98nM, while imatinib could not inhibit it with clinically relevant concentration. The T315I mutant BCR/ABL protein was resistant to CNS-9 and imatinib. CNS-9 also inhibited TK phosphorylation of platelet-derived growth factor receptor (PDGFR) or c-Kit pathways at the very similar observed IC50s when compared with imatinib, in spite of significant higher potency against ABL. The ability of CNS-9 in vitro to inhibit 101 TK molecules was assayed by KinaseProfilerTM (Upstate), showing also more specific inhibitory activity against ABL than imatinib. The growth of BCR/ABL-positive cell lines K562, KU812, BaF3 harboring wt BCR/ABL (BaF3/wt) and E255K (BaF3/E255K) was inhibited by CNS-9 with IC50 of 5, 3, 17, and 110nM, respectively (Table 1). Generally, CNS-9 was 20 to 30-fold more potent on the growth inhibition than imatinib in these same cell lines. We next investigated the in vivo effect on the leukemic growth inhibition of CNS-9. Nude mice were injected subcutaneously with 3x107 KU812 (wt BCR/ABL) on Day 0. CNS-9 or imatinib were orally administrated twice a day from Day 7 to Day 18. The dosages of CNS-9 and imatinib, which inhibited completely tumor growth were 20mg/kg/day and 200mg/kg/day, respectively, indicating that CNS-9 is 10-fold potent than imatinib in vivo. To examine the in vivo effect of CNS-9 against mutant BCR/ABL, BaF3/wt, BaF3/E255K or BaF3/T315I were engrafted to nude mice and treated with CNS-9 or imatinib. CNS-9 was also 10-fold potent than imatinib against BaF3/wt. Intriguingly, mice harboring BaF3/wt or BaF3/E255K showed significantly prolonged survival when treated with CNS-9. Consistent with in vitro assay, CNS-9 had no effect on T315I, and imatinib was not effective against both E255K and T315I. In conclusion, CNS-9 is substantially more inhibitory and more specifically than imatinib toward BCR/ABL-dependent cell growth both in vitro and in vivo Moreover, CNS-9 may be effective for leukemia patients whose leukemic cells harbor E255K mutant. The efficacy and safety of CNS-9 for Ph+ leukemias should be verified in early phase clinical trials. The IC50s values of leukemic cell lines for CNS-9 and imatinib CNS-9 (nM) imatinib (nM) K562 p210 wt BCR/ABL 5 130 KU812 p210 wt BCR/ABL 3 67 U937 BCR/ABL (−) >1000 >1000 BaF3 p190 wt BCR/ABL 17 360 BaF3 p190 E255K BCR/ABL 110 >1000 BaF3 p190 T315I BCR/ABL >1000 >1000


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 616-616 ◽  
Author(s):  
Deepa B. Shankar ◽  
Jenny C. Chang ◽  
Bertrand Parcells ◽  
Salemiz Sandoval ◽  
Junling Li ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have less than 60% overall survival despite aggressive chemotherapy and bone marrow transplantation. Only one third of the adult patients diagnosed with AML will be cured. AML blast cells from up to 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains an internal tandem duplication in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a novel multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and all members of the VEGF and PDGF receptor families. To determine the effects of ABT-896 on AML cells, we treated AML cell lines, primary cells, and tumors in xenograft models with varying concentrations of the drug. In vitro viability assays showed that ABT-869 inhibited the growth of two different cell lines, MV-4-11 (human AML cell line that expresses FLT3-ITD) and BAF3-ITD (murine B-cell line stably transfected with the FLT3-ITD) at an IC50 of 10nM. ABT-869 was also effective against another mutation of FLT3, D835V, but at higher concentrations (IC50 of 100nM). Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and Propidium Iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. To examine the in vitro effects of ABT-869 on normal hematopoietic progenitor cells, we performed methylcellulose-based colony assays with human bone marrow. No significant difference was observed in the number and type of colonies formed using BM cells treated with ABT-869 or control, up to a concentration of 1 micromolar. These results suggest that ABT-869 is not toxic to normal bone marrow progenitor cells at concentrations that are effective against AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-4-11, Baf3-ITD, Baf3-D835V, or Baf3-WT cells, with oral preparations of ABT-869. Complete regression of MV-4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Histology of the tumors from the control-treated group showed a high degree of proliferation by Ki-67 staining, increased mitotic figures, and a well-defined tumor mass. In contrast, the tumors from mice treated with ABT-869 showed a number of apoptotic bodies by TUNEL staining and the presence of reactive, inflammatory cells. Interestingly, we also observed that mice that received ABT-869 the day after injection of AML cells remained tumor-free for over 2 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. We are evaluating the activity of ABT-869 treatment of SCID mice injected with Baf3-ITD, Baf3-D835V, or Baf3-WT cells. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic, and provide rationale for the treatment and prevention of relapse in AML patients.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 646-646
Author(s):  
Duncan H. Mak ◽  
Wendy D. Schober ◽  
Marina Konopleva ◽  
Jorge Cortes ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Abstract 646 The advent of imatinib, a Bcr-Abl tyrosine kinase inhibitor revolutionized the treatment for patients with CML. Development of resistance, limited activity in blast crisis CML, and more importantly, insensitivity of quiescent primitive CD34+ CML progenitor cells are evolving problems facing this therapy. Antiapoptotic Bcl-2 proteins were known to be highly expressed in Bcr-Abl expressing cells and inhibition of Bcl-2/Bcl-XL by the selective inhibitor ABT-737 was reported to augment the killing of tyrosine kinase inhibitors in CML cells. However, its effect on quiescent primitive CD34+ CML progenitor cells is unknown. To investigate the effect of activating the apoptotic machinery in quiescent primitive CD34+CML progenitor cells, which are resistant to current therapies, we first compared the expression of antiapoptotic proteins in proliferating and quiescent primitive CD34+CML progenitor cells. Cells obtained from patients with blast crisis CML were stained with the fluorescent 5-(and 6-) carboxy-fluorescein diacetate succinimidyl ester, a cell proliferation tracking dye, and cultured in vitro for 4-6 days. Cells were then stained with CD34 antibody and FACS sorted into proliferating and quiescent CD34+/PI- CML progenitor cells. RNA levels of antiapoptotic proteins in these two cell populations (n=8) were determined by real-time RT-PCR: quiescent and proliferating primitive CD34+ CML progenitor cells expressed similar levels of Bcl-2, Bcl-XL, Mcl-1, and XIAP implying that like total blast cells, quiescent primitive CD34+CML progenitor cells may also be sensitive to agents targeting these proteins. We next treated 5 samples obtained from patients with blast crisis CML with ABT-737 and measured apoptosis in total CD34+ cells, proliferating CD34+ cells, and quiescent CD34+ cells. All 5 patients were resistant to or relapsed from imatinib and nilotinib and/or dasatinib treatments and they were insensitive to imatinib in vitro as expected. However, cells from 4 patients were sensitive to ABT-737, in bulk blasts and in both proliferating and quiescent CD34+ CML cell compartments: % specific apoptosis with 100 nM of ABT-737=40.8±7.7, 38.4±8.5, 40.0±5.1, respectively at 24 hours. Interestingly, when ABT-737 was combined with imatinib, cell death was greatly enhanced in cells from all 5 patients in all cell compartments (combination index=0.059±0.032, 0.041±0.025, 0.111±0.042, respectively). Furthermore, we showed previously, that triptolide, an antitumor agent from a Chinese herb, induces apoptosis in both proliferating and quiescent primitive CD34+CML progenitor cells by decreasing Mcl-1 which is a resistant factor for ABT-737, XIAP, and Bcr-Abl protein levels (Mak D. et al., MCT in press). When ABT-737 was combined with triptolide, a significant increase of cell death was found in total CD34+ and proliferating as well as quiescent primitive CD34+CML cells with combination index at EC50=0.57, 0.55, and 0.56, respectively in cells from the 5 patients suggesting a high degree of synergism. In summary, Bcl-2, Bcl-XL, Mcl-1, and XIAP are equally expressed in proliferating and quiescent primitive CML cells and targeting Bcl-2/Bcl-XL promotes death of blast crisis CML cells, tyrosine kinase inhibitor resistant CML cells, and quiescent primitive CD34+ CML progenitor cells. Researches suggest that the combination of apoptosis inducing agents and tyrosine kinase inhibitor is a novel strategy to overcome tyrosine kinase resistance, eradicate quiescent primitive CML progenitor cells, and improve current therapy for patients with CML. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Ting-Ting Huang ◽  
Xin Wang ◽  
Shao-Jia Qiang ◽  
Zhen-Nan Zhao ◽  
Zhuo-Xun Wu ◽  
...  

Chronic myelogenous leukemia (CML) typically results from a reciprocal translocation between chromosomes 9 and 22 to produce the bcr-abl oncogene that when translated, yields the p210 BCR-ABL protein in more than 90% of all CML patients. This protein has constitutive tyrosine kinase activity that activates numerous downstream pathways that ultimately produces uncontrolled myeloid proliferation. Although the use of the BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, dasatinib, bosutinib, and ponatinib have increased the overall survival of CML patients, their use is limited by drug resistance and severe adverse effects. Therefore, there is the need to develop novel compounds that can overcome these problems that limit the use of these drugs. Therefore, in this study, we sought to find novel compounds using Hypogen and Hiphip pharmacophore models based on the structures of clinically approved BCR-ABL TKIs. We also used optimal pharmacophore models such as three-dimensional queries to screen the ZINC database to search for potential BCR-ABL inhibitors. The hit compounds were further screened using Lipinski’s rule of five, ADMET and molecular docking, and the efficacy of the hit compounds was evaluated. Our in vitro results indicated that compound ZINC21710815 significantly inhibited the proliferation of K562, BaF3/WT, and BaF3/T315I leukemia cells by inducing cell cycle arrest. The compound ZINC21710815 decreased the expression of p-BCR-ABL, STAT5, and Crkl and produced apoptosis and autophagy. Our results suggest that ZINC21710815 may be a potential BCR-ABL inhibitor that should undergo in vivo evaluation.


1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 516-516 ◽  
Author(s):  
Daniel Goff ◽  
Alice Shih ◽  
Angela Court Recart ◽  
Larisa Balaian ◽  
Ryan Chuang ◽  
...  

Abstract Abstract 516 Introduction: Several studies have demonstrated the role of leukemia stem cells (LSC) in the development and maintenance of human chronic myeloid leukemia (CML). These cells, which first develop in chronic phase CML (CP CML) with acquisition of the BCR-ABL fusion protein, are often quiescent and can be highly resistant to apoptosis induced by drugs and radiotherapy that target rapidly dividing cells. Data has also shown that CML LSC become increasingly resistant to BCR-ABL inhibition with progression to blast crisis CML (BC CML). Bcl-2 family proteins are key regulators of apoptosis and have been shown by numerous studies to regulate cancer resistance to chemotherapy. This family of proteins has also been implicated in the development of BC CML, however most studies have focused on CML cell lines and their expression of Bcl-2 family proteins in vitro. Thus, there is relatively little data on expression of Bcl-2 family proteins in primary CML LSC and on the role of these proteins in regulating chemotherapy resistance in CML LSC in vivo. As Bcl-2 family proteins are known regulators of chemotherapy resistance we hypothesized that human BC CML LSC may overexpress these proteins compared to normal hematopoietic stem cells. We analyzed Bcl-2 family mRNA and protein expression in CP CML and BC CML LSC and compared this expression to normal cord blood stem and progenitor cells. We also analyzed whether these cells were sensitive to chemotherapy treatment in vitro. Finally, we tested whether a high potency pan-Bcl-2 inhibitor, 97C1, could effectively kill CML LSC in vitro and in vivo. Methods: Bcl-2 and Mcl-1 protein expression was measured in primary CP CML, BC CML, and normal cord blood cells using intracellular FACS. We also measured Bcl-2, Mcl-1, Bcl-X, and Bfl-1 mRNA expression in FACS sorted CD34+CD38+lin− cells (LSC) from these samples. For all drug studies we used either serially transplanted CD34+ cells derived from primary BC CML patient samples or primary CD34+ normal cord blood cells. In vitro drug responses were tested by culturing CD34+ cells either alone or in co-culture with a mouse bone marrow stromal cell line (SL/M2). Effects on colony formation and replating were also tested by culturing sorted CD34+CD38+lin− cells in methylcellulose in the presence and absence of drug. For in vivo testing of 97C1 we transplanted neonatal RAG2-/-yc-/- mice with CD34+ cells from 3 different BC CML and cord blood samples. Transplanted mice were screened for peripheral blood engraftment at 6–8 weeks post-transplant and engrafted mice were then treated for 2 weeks with 97C1 by IP injection. Following the treatment period the mice were sacrificed and hemotapoietic organs were analyzed for human engraftment by FACS. Results: BC CML progenitors expressed higher levels of Bcl-2 and Mcl-1 protein compared to normal cord blood and chronic phase CML cells. mRNA expression of Mcl-1, Bcl-X, and Bfl-1 was also increased in BC CML progenitors compared to CP CML progenitors. While BC CML LSC cultured in vitro were resistant to etoposide and dasatinib-induced cell death, 97C1 treatment led to a dose-dependent increase in cell death along with a dose-dependent decrease in the frequency of CD34+CD38+lin− cells compared to vehicle treated controls. While cord blood progenitor cells were also sensitive to 97C1 treatment they had an IC50 around 10 times higher than that for the BC CML cells (100nM versus 10nM). Importantly, 97C1 treatment did not inhibit cord blood colony formation or colony replating in vitro. Mice transplanted with BC CML LSC developed CML in 6–8 weeks post-transplant with diffuse myeloid sarcomas and engraftment of human CD34+CD38+lin− cells in the peripheral blood, liver, spleen, and bone marrow. In vivo treatment with 97C1 led to a significant reduction in both total human engraftment and engraftment of CD34+CD38+lin− cells in all hematopoietic organs analyzed. Conclusion: Our results demonstrate that BC CML LSC are resistant to conventional chemotherapy but are sensitive to 97C1 in vitro and in vivo. Broad-spectrum inhibition of Bcl-2 family proteins may help to eliminate CML LSC while sparing normal hematopoietic stem and progenitor cells. Disclosures: Jamieson: CoronadoBiosciences: Research Funding; CIRM: Research Funding.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1201-1208 ◽  
Author(s):  
J.H. Frederik Falkenburg ◽  
Amon R. Wafelman ◽  
Peter Joosten ◽  
Willem M. Smit ◽  
Cornelis A.M. van Bergen ◽  
...  

Relapse of chronic myeloid leukemia (CML) in chronic phase after allogeneic stem cell transplantation (SCT) can be successfully treated by donor lymphocyte infusion (DLI). However, relapse of accelerated phase CML, blast crisis, or acute leukemia after allogeneic SCT are resistant to DLI in the majority of cases. In vitro-selected and expanded leukemia-reactive T-cell lines may be more effective in inducing an antileukemic response in vivo. To treat a patient with accelerated phase CML after allogeneic SCT, leukemia-reactive cytotoxic T-lymphocyte (CTL) lines were generated from her HLA-identical donor. Using a modification of a limiting dilution assay, T cells were isolated from the donor, selected based on their ability to inhibit the in vitro growth of CML progenitor cells, and subsequently expanded in vitro to generate CTL lines. Three CTL lines were generated that lysed the leukemic cells from the patient and inhibited the growth of leukemic progenitor cells. The CTL did not react with lymphocytes from donor or recipient and did not affect donor hematopoietic progenitor cells. The 3 leukemia-reactive CTL lines were infused at 5-week intervals at a cumulative dose of 3.2 × 109 CTL. Shortly after the third infusion, complete eradication of the leukemic cells was observed, as shown by cytogenetic analysis, fluorescence in situ hybridization, molecular analysis of BCR/ABL-mRNA, and chimerism studies. These results show that in vitro cultured leukemia-reactive CTL lines selected on their ability to inhibit the proliferation of leukemic progenitor cells in vitro can be successfully applied to treat accelerated phase CML after allogeneic SCT.


1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123 ◽  
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


Sign in / Sign up

Export Citation Format

Share Document