Inhibition of Bcl-2/Bcl-XL Promotes Apoptosis in Blast Crisis CML Including Quiescent Primitive Progenitor Cells Regardless of Cellular Responses to Tyrosine Kinase Inhibitors.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 646-646
Author(s):  
Duncan H. Mak ◽  
Wendy D. Schober ◽  
Marina Konopleva ◽  
Jorge Cortes ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Abstract 646 The advent of imatinib, a Bcr-Abl tyrosine kinase inhibitor revolutionized the treatment for patients with CML. Development of resistance, limited activity in blast crisis CML, and more importantly, insensitivity of quiescent primitive CD34+ CML progenitor cells are evolving problems facing this therapy. Antiapoptotic Bcl-2 proteins were known to be highly expressed in Bcr-Abl expressing cells and inhibition of Bcl-2/Bcl-XL by the selective inhibitor ABT-737 was reported to augment the killing of tyrosine kinase inhibitors in CML cells. However, its effect on quiescent primitive CD34+ CML progenitor cells is unknown. To investigate the effect of activating the apoptotic machinery in quiescent primitive CD34+CML progenitor cells, which are resistant to current therapies, we first compared the expression of antiapoptotic proteins in proliferating and quiescent primitive CD34+CML progenitor cells. Cells obtained from patients with blast crisis CML were stained with the fluorescent 5-(and 6-) carboxy-fluorescein diacetate succinimidyl ester, a cell proliferation tracking dye, and cultured in vitro for 4-6 days. Cells were then stained with CD34 antibody and FACS sorted into proliferating and quiescent CD34+/PI- CML progenitor cells. RNA levels of antiapoptotic proteins in these two cell populations (n=8) were determined by real-time RT-PCR: quiescent and proliferating primitive CD34+ CML progenitor cells expressed similar levels of Bcl-2, Bcl-XL, Mcl-1, and XIAP implying that like total blast cells, quiescent primitive CD34+CML progenitor cells may also be sensitive to agents targeting these proteins. We next treated 5 samples obtained from patients with blast crisis CML with ABT-737 and measured apoptosis in total CD34+ cells, proliferating CD34+ cells, and quiescent CD34+ cells. All 5 patients were resistant to or relapsed from imatinib and nilotinib and/or dasatinib treatments and they were insensitive to imatinib in vitro as expected. However, cells from 4 patients were sensitive to ABT-737, in bulk blasts and in both proliferating and quiescent CD34+ CML cell compartments: % specific apoptosis with 100 nM of ABT-737=40.8±7.7, 38.4±8.5, 40.0±5.1, respectively at 24 hours. Interestingly, when ABT-737 was combined with imatinib, cell death was greatly enhanced in cells from all 5 patients in all cell compartments (combination index=0.059±0.032, 0.041±0.025, 0.111±0.042, respectively). Furthermore, we showed previously, that triptolide, an antitumor agent from a Chinese herb, induces apoptosis in both proliferating and quiescent primitive CD34+CML progenitor cells by decreasing Mcl-1 which is a resistant factor for ABT-737, XIAP, and Bcr-Abl protein levels (Mak D. et al., MCT in press). When ABT-737 was combined with triptolide, a significant increase of cell death was found in total CD34+ and proliferating as well as quiescent primitive CD34+CML cells with combination index at EC50=0.57, 0.55, and 0.56, respectively in cells from the 5 patients suggesting a high degree of synergism. In summary, Bcl-2, Bcl-XL, Mcl-1, and XIAP are equally expressed in proliferating and quiescent primitive CML cells and targeting Bcl-2/Bcl-XL promotes death of blast crisis CML cells, tyrosine kinase inhibitor resistant CML cells, and quiescent primitive CD34+ CML progenitor cells. Researches suggest that the combination of apoptosis inducing agents and tyrosine kinase inhibitor is a novel strategy to overcome tyrosine kinase resistance, eradicate quiescent primitive CML progenitor cells, and improve current therapy for patients with CML. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2843-2853 ◽  
Author(s):  
Mhairi Copland ◽  
Francesca Pellicano ◽  
Linda Richmond ◽  
Elaine K. Allan ◽  
Ashley Hamilton ◽  
...  

Chronic myeloid leukemia (CML), a hematopoietic stem-cell disorder, cannot be eradicated by conventional chemotherapy or the tyrosine kinase inhibitor imatinib mesylate (IM). To target CML stem/progenitor cells, we investigated BMS-214662, a cytotoxic farnesyltransferase inhibitor, previously reported to kill nonproliferating tumor cells. IM or dasatinib alone reversibly arrested proliferation of CML stem/progenitor cells without inducing apoptosis. In contrast, BMS-214662, alone or in combination with IM or dasatinib, potently induced apoptosis of both proliferating and quiescent CML stem/progenitor cells with less than 1% recovery of Philadelphia-positive long-term culture-initiating cells. Normal stem/progenitor cells were relatively spared by BMS-214662, suggesting selectivity for leukemic stem/progenitor cells. The ability to induce selective apoptosis of leukemic stem/progenitor cells was unique to BMS-214662 and not seen with a structurally similar agent BMS-225975. BMS-214662 was cytotoxic against CML blast crisis stem/progenitor cells, particularly in combination with a tyrosine kinase inhibitor and equally effective in cell lines harboring wild-type vs mutant BCR-ABL, including the T315I mutation. This is the first report of an agent with activity in resistant and blast crisis CML that selectively kills CML stem/progenitor cells through apoptosis and offers potential for eradication of chronic phase CML.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4450-4450
Author(s):  
A. M. Carella ◽  
Gioacchino Catania ◽  
G. Beltrami ◽  
G. Pica

Abstract Abstract 4450 M-TOR is a key regulator of autophagy. Rapamycin and clarithromycin (structurally similar to rapamycin), have been demonstrated to have in vitro activity in blocking autophagy. In four patients with advanced CML, remarkable response to the combination of clarithromycin and a tyrosine kinase inhibitor was observed. Here we present the results achieved by the combination. A 43-year-old woman was diagnosed with high-risk Sokal CML in February 2000. She was treated with IFN-alpha and imatinib (400 mg/day) with persistence of 100% Ph-positive metaphases. In March 2006, WBC was no longer controlled and she was treated with nilotinib. Complete hematologic response (CHR) was achieved by the end of April 2006, but there was no cytogenetic response (CyR). She was given dasatinib (70 mg b.i.d.) without complete cytogenetic response (CCyR) and after 7 months the bcr-abl/abl ratio was 6.1% in March 2011. At that time, the patient had an infection (otits/pharyngitis) sensitive to clarithromycin, which was added to dasatinib at a dose of 500 mg b.i.d. April 2011 there was a surprising reduction in the transcript to 0.5%. As of June 2011, the value was 0.05%, and the patient continues to receive clarithromycin (500 mg/day) and dasatinib (100 mg/day). Nowadays (August 1), the patient is in CHR, CCyR and major molecular remission (MMR) (bcr-abl/abl ratio 0.001%). The patient stopped clarithromycin and he is continuing on dasatinib. A 53-year-old man was diagnosed with de novo lymphoid blast crisis CML in August 2010; bcr-abl/abl ratio was 95.2%. He had a sibling donor. In October 2010 bcr-abl/abl ratio was reduced to 0.2% after chemo + imatinib. In November 2010, bcr-abl/abl ratio was 22% and he was treated with dasatinib (70 mg b.i.d.) with WBC control and a small reduction of bcr-abl/abl ratio (18% in February 2011). Soon thereafter, he underwent allogeneic transplant. Two months after transplant (May 2011) the disease progressed and bcr-abl/abl value had increased to 47%. He was restarted on dasatinib (100 mg/day) but the transcript increased in 4 weeks to 143%. Because of our previous experience, we added clarithromycin to dasatinib on June 2, 2011. Two weeks later, bcr-abl/abl value was reduced to 3.2%, and to 1.5% after another week. We stopped clarithromycin and three weeks later under dasatinib alone the transcript increased to 20%. From one week we added newly clarithromycin to dasatinib. A 68 year old man was diagnosed with CML in October 1999. A CCyR was achieved after autografting and soon after IFN-alpha was given as maintenance. In October 2000 the patient relapsed. A second CCyR was achieved in December 2001 after imatinib (400 mg/day), which lasted for six years. In October 2006 bcr-abl/abl ratio was 4.5%. He was treated with dasatinib (70 mg. b.i.d.) with WBC control but with no CyR. In March 2011, bcr-abl/abl ratio was 42.5%. Nilotinib (600 mg. b.i.d.) was begun with no change in bcr-abl/abl ratio after 2 months. In June 2011, clarithromycin (500 mg. b.i.d.) was added; 3 weeks later, the bcr-abl/abl ratio had decreased to 17% and two weeks later (July 13, 2011) to 4%. On July 28, bcr-abl/abl is 0,00022%. A 70 year old woman was diagnosed with CML in November 1998. She was treated with IFN-alpha but only partial CyR was achieved. In January 2001, 100% Ph-positive metaphases were found in BM. She was begun on imatinib (400 mg/day) but the karyotype did not change. In May 2005 she was started on nilotinib (600 mg/daily) since bcr-abl/abl ratio was 26.5%. Blood counts were controlled but there was no change in cytogenetics. In August 2010 WBC increased to 100×103/l. Dasatinib (70 mg. b.i.d.) was begun. Because blood count control was inadequate, hydroxyurea was added. In December 2010, bcr-abl/abl ratio had increased to 140%, and E255V mutation was found. In May 2011, clarithromycin (500 mg. b.i.d.) was added. In 2 weeks, the WBC had decreased from 76×103/l to 10×103/l and bcr-abl/abl ratio was 30% (June 4, 2011). One month later (July 4, 2011) bcr-abl/abl ratio was 3% and the mutation was no longer found in bone marrow. In the last evaluation (July 13, 2011) bcr-abl/abl ratio was 0.00096%. The patient stopped clarithromycin and she is on dasatinib alone. In conclusion, no patients have gone off study for toxicity. In no case we observed grade 3–4 myelosuppression. The remarkable responses obtained in these 4 patients support the hypothesis that inhibition of autophagy may make CML cells sensitive to killing by tyrosine kinase inhibitors. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

Abstract The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5543
Author(s):  
Hyeok-Jae Jang ◽  
Young-Min Woo ◽  
Kazuhito Naka ◽  
Jong-Ho Park ◽  
Ho-Jae Han ◽  
...  

Previous studies have suggested that statins can be repurposed for cancer treatment. However, the therapeutic efficacy of statins in chronic myeloid leukemia (CML) has not yet been demonstrated. In this study, we retrospectively evaluated the outcomes of 408 CML patients who underwent imatinib therapy. The deep molecular response rates in patients treated with the statin/TKI combination were significantly higher than those in patients treated with TKI alone (p = 0.0016). The statin/TKI combination exerted potent cytotoxic effects against wild-type and ABL1 mutant CML, BaF3, and K562/T315I mutant cells. Furthermore, the statin/TKI combination additively inhibited the colony-forming capacity of murine CML-KLS+ cells in vitro. In addition, we examined the additive growth-inhibitory effects of the statin/tyrosine kinase inhibitor (TKI) combination against CML patient-derived CD34+ cells. The growth-inhibitory effects of the statin/imatinib combination against CD34+/CML primary cells were higher than those against CD34+/Norm cells (p = 0.005), suggesting that the combination of rosuvastatin and imatinib exerted growth-inhibitory effects against CML CD34+ cells, but not against normal CD34+ cells. Furthermore, results from RNA sequencing of control and statin-treated cells suggested that statins inhibited c-Myc-mediated and hematopoietic cell differentiation pathways. Thus, statins can be potentially repurposed to improve treatment outcomes in CML patients when combined with TKI therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4240-4240
Author(s):  
Lin Qiu ◽  
Xiao-dan Wang ◽  
Fang Ge ◽  
Xiu-li Wang ◽  
Bo-long Zhang ◽  
...  

Abstract Imatinib (IM) is a higherly effective targeted drug for CML. However, some CML patients, especially accelerated and blast crisis phase, often relapse due to drug resistance resulting from the emergence of IM-resistant point mutations within the BCR-ABL tyrosine kinase domain. This stimulates the development of new kinase inhibitors that are able to override resistance to IM. HHGV678 is a novel tyrosine kinase inhibitor and we employed IM-sensitive (K562 and 32Dp210) and resistant (K562R and fifteen 32Dp210 mutants) BCR-ABL+ cell lines to compare HHGV678 with IM on growth inhibition. In addition, synergistic effect of HHGV678 with IM was observed in 32Dp210 and 5 BCR-ABL mutants frequently observed in CML patients. MTT assay results showed that the estimated IC50 value of HHGV678 for K562 and 32Dp210 were 15.5 and 28-fold, for K562R and 15 BCR-ABL mutants, were 1.4–124.0-fold lower than that of IM, indicating that HHGV678 was a more effective than IM against cell growth of IM-sensitive and resistant cells. Using combination index analysis, HHGV678 displayed synergistic growth inhibition when used with IM in BCR-ABL mutants (M244V, Q252H, Y253H, E255K and T315I). HHGV678, combined with IM at their IC50 concentration induced apoptosis 2–5 fold higher than that of HHGV678 alone in BCR-ABL mutants respectively, by annexin-V staining. At the same condition, HHGV6787 resulted in remarkable decrease in CrKL phosphorylation as determined by western blot. We conclude that HHGV678 have significant activity against IM-sensitive and resistant BCR-ABL+ cell, especially when it combined with IM that warrant further investigation in clinical trials.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 399-399
Author(s):  
Lilian Varricchio ◽  
Giulia Federici ◽  
Francesca Masiello ◽  
Fabrizio Martelli ◽  
Mario Falchi ◽  
...  

Abstract PV is characterized by the gain-of-function V617F mutation in JAK2, the gene encoding the first signaling element of the cytokine receptor superfamily. Progenitor cells from PV are more sensitive in vitro to Imatinib, which also inhibits the SCF receptor cKIT, than those from normal sources (Gaikwad, Exp Hemat 2007;35:931) and clinical trials with similar tyrosine kinase inhibitors have been reported to have some efficacy in PV (Nussenzveig, Int J Hematol 2009;90:58; Silver, Leuk Res 2012;36:156). These data led us to examine the mechanism by which this tyrosine kinase inhibitor affects erythropoiesis in PV. We observed that in cultures containing SCF PV progenitor cells generated similar numbers of erythroid cells (Ery) as those from adult (AB) and cord (CB) blood by day 10 [fold increase (FI) ~1-2] but by day 13 PV cells generated significantly greater numbers of Ery than AB and CB [PV FI=11±0.2, p=0.021 vs AB; CB FI=6.2±1.9, p=0.025 vs PV and 0.0055 vs AB; AB FI=2.6±0.5]. Since by day 10 progenitor cells were no longer detected, we hypothesized that increases in Ery at day 13 reflect intrinsically greater Ery proliferation potentials. To test this hypothesis, we compared the phosphoproteomic landscaping of day 10 Ery from 3 PV, 3 AB and 3 CB by Reverse Phase Protein Array (RPPA) using as target >160 signaling events (data are at http://capmm.gmu.edu/data). Overall, 40 proteins were statistically different between PV and AB and 30 proteins were statistically different between CB and AB. Pathway analyses of significant hits identified that PV and CB Ery differ from the AB ones in the activation states of 1-2 proteins involved in stemness and cell cycle control inferring that there is no major change in their cycling or differentiation state. By contrast, the 3 populations showed numerous differences in cKIT signaling. PV Ery differed from AB cells by expressing greater levels of cKITY719 and cKIT703, which were reduced to barely detectable levels by the pan-JAK inhibitor Ruxolitinib, and of elements of PI3K (eNOS/NosIII, PDK1 and PKCd) and MAPK (pMARCKS, MSK1, AMPKα1 and β1 and p38 MAPK) signaling downstream, respectively, to cKITY719 and cKIT703. PV Ery expressed also greater levels of JAK2Y1007/1008 and of its downstream target STAT3Y705. CB Ery showed lower levels of cKIT, cKITY703, cKITY719 and CD63, a member of tetraspanin superfamily that binds cKITY719 switching its intracellular fate from recycling to lysosome degradation, greater phosphorylation of proteins of MAPK (pMARCKS, MSK1, PTEN and Src) and PI3K (PKCd, mTOR, p70S6K and panPKC/βII) signaling than AB Ery. These results were stoichiometrically validated by WB and indicate that PV Ery express greater degrees of cKIT activation than AB Ery suggesting that greater response to SCF might account for their greater amplification in culture. This hypothesis was tested by RPPA analyses (and stoichiometric validation by WB) of Ery from PV, AB and CB growth factor deprived (GFD) for 4h and then stimulated with SCF for 15' and 2h. GFD altered the activation state of 25 proteins (22 de-activated and 3 activated) in PV, of 12 proteins (10 de-activated and 2 activated) in AB and 8 proteins (4 de-activated and 4 activated) in CB. SCF altered the activation state of 36 proteins in PV (18 activated and 18 de-activated), 23 proteins in CB (all activations) and 6 proteins in AB (all activations). In PV and CB Ery, GFD decreased cKITY719 and cKITY703 and the activation state of their downstream targets JAK2Y1007/1008, MAPKs and mTOR while SCF increased the stoichiometric levels of cKITY719 and cKITY703 and the activation of mTOR. SCF also increased cKITY703 and cKITY719 but did not activate mTOR in Ery from AB. In agreement with the hypothesis that Ery from PV and CB respond more readily to SCF than those from AB, SCF induced greater cell-surface cKIT down-modulation (by flow cytometry) and lower intra-cytoplasmic cKIT/CD63 association (by confocal microscopy and WB) in PV and CB Ery than in AB Ery. Screening of 97 inhibitors against targets analysed by RPPA which are approved for clinical use by FDA revealed that growth of PV Ery was more sensitive than that of AB only to JAK and cKIT inhibitors. In addition, shRNA-CD63 reduced the growth of PV Ery (FI=0.9 vs 1.3 p=0.012) while increased by 2-fold (p=0.02) that of AB Ery. These results provide the first phosphoproteomic landscaping of cKIT signalling in Ery from PV and normal sources and confirm that cKIT is an important therapeutic target for PV. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2335-2335
Author(s):  
Tiziana Grafone ◽  
Simona Soverini ◽  
Gianluca Tasco ◽  
Manuela Mancini ◽  
Frank Boschelli ◽  
...  

Abstract Resistance to the BCR-ABL inhibitor imatinib mesylate (IM) is often caused by the selection of leukemic clones harboring mutations that destabilize the inactive conformation of BCR-ABL, to which IM preferentially binds, shifting the equilibrium toward the active kinase conformation. Hence the need for second -generation kinase inhibitors with a greater flexibility in binding to different BCR-ABL conformations. The 4-anilino-3 quinolinecarbonitrile SKI-606 is a novel Src and ABL kinase inhibitor. We report here that SKI-606 is a potent and antiproliferative agent when tested in K562 cell line and CD34+ cells from patients with chronic myeloid leukemia (CML) blast crisis. In K562 cells, SKI-606 treatment caused a dose-dependent decrease in cell viability accompanied by accumulation in subG1 phase, an effect not observed in BCR-ABL-negative HL-60 cells. Treatment of K562 with 100 nM SKI-606 for 24 hours caused a complete dephosphorylation of Lyn, Stat5 and Bcl-xl, while AKT and Bad phosphorylation was only diminished. Unexpectedly, the phosphorylation of BCR-ABL was less affected. SKI-606 treatment caused a shift to the subG1 phase also of CD34+ cells isolated from both IM-sensitive and resistant patients, the latter harboring the BCR-ABL mutations F359V, Y253H, E255V and E255K. The inhibitory concentration 50% (IC50) was 100 nM SKI-606 for Y253H, E255V, E255K and 1000nM for F359V. Cytofluorimetric analysis of cells from IM- sensitive CML patients indicated an accumulation in subG1 phase following treatment with SKI-606 alone or in combination with IM. Because the crystal structure of the BCR-ABL kinase domain in complex with SKI-606 has not yet been determined and the mode of binding of this inhibitor is unknown, we first used a molecular docking approach to determine SKI-606 binding mode to wild type (wt) form of the BCR-ABL kinase. We found that the interaction between SKI-606 and BCR-ABL was more stable when the activation loop was in the inactive conformation. Moreover, we found that SKI-606 retained the ability of efficiently binding all the above mentioned BCR-ABL variants, but not the T315I. Finally, we identified six BCR-ABL residues located around SKI-606 that, if mutated, could potentially be able to interfere with the SKI-606/BCR-ABL interaction: the charged residues K271, D381 and H361; the hydrophobic/aliphatic residues V299, A380 and M318. These data help refining the use of SKI-606 for treatment of BCR-ABL positive leukemias.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


Sign in / Sign up

Export Citation Format

Share Document