Secondary Acute Myeloid Leukemia (sAML): Similarly Dismal Outcomes of AML after an antecedent hematologic disorder and therapy related AML

Author(s):  
Chrysavgi Lalayanni ◽  
Eleni Gavriilaki ◽  
Anastasia Athanasiadou ◽  
Michael Iskas ◽  
Maria Papathanasiou ◽  
...  
Author(s):  
David Martínez-Cuadrón ◽  
Juan Eduardo Megías-Vericat ◽  
Josefina Serrano ◽  
Pilar Martínez-Sánchez ◽  
Eduardo Rodríguez-Arbolí ◽  
...  

Secondary acute myeloid leukemia (sAML) comprises a heterogeneous group of patients, and is associated with poor overall survival (OS). We analyze the characteristics, treatment patterns and outcomes of sAML adult patients of the Programa Español de Tratamientos en Hematología (PETHEMA) registry. Overall, 6211 (72.9%) were de novo and 2310 (27.1%) sAML, divided into myelodysplastic syndrome (MDS-AML, 44%), MDS/myeloproliferative (MDS/MPN-AML, 10%), MPN-AML (11%), therapy-related (t-AML, 25%), and antecedent neoplasia without prior chemotherapy/radiotherapy (neo-AML, 9%). Compared to de novo, sAML were older (median age 69 years old), had more ECOG ≥2 (35%) or high-risk cytogenetics (40%), less FLT3-ITD (11%) and NPM1 mutations (21%), and received less intensive chemotherapy regimens (38%) (all P<0.001). Median OS was higher in de novo than in sAML (10.9 vs 5.6 months, P<0.001); and shorter in sAML after hematologic disorder (MDS, MDS/MPN or MPN) as compared to t-AML and neo-AML (5.3 vs 6.1 vs 5.7 months, respectively, P=0.04). After intensive chemotherapy, median OS was better among de novo and neo-AML patients (17.2 and 14.6 months). No OS differences were observed after hypomethylating agents according to type of AML. sAML was as an independent adverse prognostic factor for OS. We confirm high prevalence and adverse features of sAML and we establish its independent adverse prognostic value. This study was registered at www.clinicaltrials.gov as #NCT02607059.


Author(s):  
Michael Heuser ◽  
B. Douglas Smith ◽  
Walter Fiedler ◽  
Mikkael A. Sekeres ◽  
Pau Montesinos ◽  
...  

AbstractThis analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Marcus Bauer ◽  
Christoforos Vaxevanis ◽  
Haifa Kathrin Al-Ali ◽  
Nadja Jaekel ◽  
Christin Le Hoa Naumann ◽  
...  

Background: Myelodysplastic syndromes (MDS) are caused by a stem cell failure and often include a dysfunction of the immune system. However, the relationship between spatial immune cell distribution within the bone marrow (BM), in relation to genetic features and the course of disease has not been analyzed in detail. Methods: Histotopography of immune cell subpopulations and their spatial distribution to CD34+ hematopoietic cells was determined by multispectral imaging (MSI) in 147 BM biopsies (BMB) from patients with MDS, secondary acute myeloid leukemia (sAML), and controls. Results: In MDS and sAML samples, a high inter-tumoral immune cell heterogeneity in spatial proximity to CD34+ blasts was found that was independent of genetic alterations, but correlated to blast counts. In controls, no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in an area of ≤10 μm to CD34+ HSPC. Conclusions: CD8+ and FOXP3+ T cells are regularly seen in the 10 μm area around CD34+ blasts in MDS/sAML regardless of the course of the disease but lack in the surrounding of CD34+ HSPC in control samples. In addition, the frequencies of immune cell subsets in MDS and sAML BMB differ when compared to control BMB providing novel insights in immune deregulation.


2021 ◽  
Vol 21 ◽  
pp. S311-S312
Author(s):  
Maria F. Ortiz ◽  
Angela M. Peña ◽  
Luis A. Salazar ◽  
Sara I. Jimenez ◽  
Manuel Rosales ◽  
...  

2007 ◽  
Vol 29 (9) ◽  
pp. 646-648 ◽  
Author(s):  
Michael Weintraub ◽  
Shoshana Revel-Vilk ◽  
Mira Charit ◽  
Memet Aker ◽  
Jacob P??er

Sign in / Sign up

Export Citation Format

Share Document