scholarly journals Molecular Mechanisms of Hepatic Steatosis and Insulin Resistance in the AGPAT2-Deficient Mouse Model of Congenital Generalized Lipodystrophy

2009 ◽  
Vol 9 (2) ◽  
pp. 165-176 ◽  
Author(s):  
Víctor A. Cortés ◽  
David E. Curtis ◽  
Suja Sukumaran ◽  
Xinli Shao ◽  
Vinay Parameswara ◽  
...  
2006 ◽  
Vol 281 (49) ◽  
pp. 37603-37615 ◽  
Author(s):  
Yuan-Li Zhang ◽  
Antonio Hernandez-Ono ◽  
Patty Siri ◽  
Stuart Weisberg ◽  
Donna Conlon ◽  
...  

2018 ◽  
Vol 314 (5) ◽  
pp. E433-E447 ◽  
Author(s):  
Chih-Wei Liu ◽  
Hung-Cheng Tsai ◽  
Chia-Chang Huang ◽  
Chang-Youh Tsai ◽  
Yen-Bo Su ◽  
...  

In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.


Author(s):  
Cindy Kunne ◽  
Alexandra Acco ◽  
Suzanne Duijst ◽  
Dirk R. de Waart ◽  
Coen C. Paulusma ◽  
...  

2019 ◽  
Vol 20 (5) ◽  
pp. 1227 ◽  
Author(s):  
Eun-Young Kwon ◽  
Myung-Sook Choi

The present study aimed to investigate the molecular mechanisms underlying the anti-obesity effect of flavonoid eriodictyol (ED) supplementation in mice fed with a high-fat diet (HFD). C57BL/6N mice were fed with normal diet (ND), HFD (40 kcal% fat), or HFD + 0.005% (w/w) ED for 16 weeks. In HFD-induced obese mice, dietary ED supplementation significantly alleviated dyslipidemia and adiposity by downregulating the expression of lipogenesis-related genes in white adipose tissue (WAT), while enhancing fecal lipid excretion. ED additionally improved hepatic steatosis and decreased the production of pro-inflammatory cytokines by downregulating the expression of hepatic enzymes and the genes involved in lipogenesis and upregulating the expression of hepatic fatty acid oxidation-related enzymes and genes. In addition, ED improved insulin resistance (IR) by suppressing hepatic gluconeogenesis, enhancing glucose utilization, and modulating the production and release of two incretin hormones, namely gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Taken together, the current findings indicated that ED can protect against diet-induced obesity and related metabolic disturbances, including dyslipidemia, inflammation, fatty liver disease, and IR in diet-induced obese mice.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jing-Na Deng ◽  
Juan Li ◽  
Hong-Na Mu ◽  
Yu-Ying Liu ◽  
Ming-Xia Wang ◽  
...  

This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD) for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2), which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthesis (FAS), and acetyl-CoA carboxylase (ACC) proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.


2020 ◽  
Vol 64 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Ting Xiao ◽  
Xiuci Liang ◽  
Hailan Liu ◽  
Feng Zhang ◽  
Wen Meng ◽  
...  

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Weiqin Chen ◽  
Hongyi Zhou ◽  
Pradip Saha ◽  
Luge Li ◽  
Lawrence Chan

Bscl2–/– mice recapitulate many of the major metabolic manifestations in Berardinelli-Seip Congenital Lipodystrophy type 2 (BSCL2) individuals, including lipodystrophy, hepatomegly, hepatic steatosis and insulin resistance. The mechanisms that underlie hepatic steatosis and insulin resistance in Bscl2–/– mice are poorly understood. To address this issue, we performed hyperinsulinemic-euglycemic clamp on Bscl2–/– and wild-type mice after an overnight (16-h) fast, and found that Bscl2–/– actually displayed increased hepatic insulin sensitivity. Interestingly, liver in Bscl2–/– mice after a short term (4-h) fast had impaired acute insulin signaling, a defect that disappeared after a 16-h fast. Notably, fasting dependent hepatic insulin signaling in Bscl2–/– mice was not associated with liver diacylglyceride and ceramide contents, but could be attributable in part to the expression of hepatic insulin signaling receptor and substrates. Meanwhile, increased de novo lipogenesis and decreased β-oxidation led to severe hepatic steatosis in fed or short fasted Bscl2–/– mice while liver lipid accumulation and metabolism in Bscl2–/– mice was markedly impacted by prolonged fasting. Furthermore, mice with liver-specific inactivation of Bscl2 manifested no hepatic steatosis even under high fat diet, suggesting Bscl2 does not play a cell autonomous role in regulating liver lipid homeostasis. Overall, our results offered new insights into the metabolic adaptations of liver in response to fasting and uncovered a novel fasting-dependent regulation of hepatic insulin signaling in a mouse model of human BSCL2.


2014 ◽  
Vol 94 (11) ◽  
pp. 1273-1282 ◽  
Author(s):  
Marian Kampschulte ◽  
Christiane Stöckl ◽  
Alexander C Langheinrich ◽  
Ulrike Althöhn ◽  
Rainer M Bohle ◽  
...  

Metabolism ◽  
2016 ◽  
Vol 65 (12) ◽  
pp. 1743-1754 ◽  
Author(s):  
Heekyung Chung ◽  
Winjet Chou ◽  
Dorothy D. Sears ◽  
Ruth E. Patterson ◽  
Nicholas J.G. Webster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document