scholarly journals Zika virus transmission via breast milk in suckling mice

Author(s):  
W. Pang ◽  
Y.-L. Lin ◽  
R. Xin ◽  
X.-X. Chen ◽  
Y. Lu ◽  
...  
Author(s):  
Wanderson Kleber de Oliveira ◽  
Juan Cortez-Escalante ◽  
Wanessa Tenório Gonçalves Holanda De Oliveira ◽  
Greice Madeleine Ikeda do Carmo ◽  
Cláudio Maierovitch Pessanha Henriques ◽  
...  

2016 ◽  
Vol 65 (9) ◽  
pp. 242-247 ◽  
Author(s):  
Wanderson Kleber de Oliveira ◽  
Juan Cortez-Escalante ◽  
Wanessa Tenório Gonçalves Holanda De Oliveira ◽  
Greice Madeleine Ikeda do Carmo ◽  
Cláudio Maierovitch Pessanha Henriques ◽  
...  

Author(s):  
Susannah Colt ◽  
Maria N Garcia-Casal ◽  
Juan Pablo Peña-Rosas ◽  
Julia L. Finkelstein ◽  
Pura Rayco-Solon ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Elizabeth Centeno-Tablante ◽  
Melisa Medina-Rivera ◽  
Julia L. Finkelstein ◽  
Heather S. Herman ◽  
Pura Rayco-Solon ◽  
...  

We systematically searched regional and international databases and screened 1658 non-duplicate records describing women with suspected or confirmed ZIKV infection, intending to breastfeed or give breast milk to an infant to examine the potential of mother-to-child transmission of Zika virus (ZIKV) through breast milk or breastfeeding-related practices. Fourteen studies met our inclusion criteria and inform this analysis. These studies reported on 97 mother–children pairs who provided breast milk for ZIKV assessment. Seventeen breast milk samples from different women were found positive for ZIKV via RT-PCR, and ZIKV replication was found in cell cultures from five out of seven breast milk samples from different women. Only three out of six infants who had ZIKV infection were breastfed, no evidence of clinical complications was found to be associated with ZIKV RNA in breast milk. This review updates our previous report by including 12 new articles, in which we found no evidence of ZIKV mother-to-child transmission through breast milk intake or breastfeeding. As the certainty of the present evidence is low, additional studies are still warranted to determine if ZIKV can be transmitted through breastfeeding.


2017 ◽  
Vol 17 (6) ◽  
pp. 1681-1686 ◽  
Author(s):  
J. Ikejezie ◽  
C. N. Shapiro ◽  
J. Kim ◽  
M. Chiu ◽  
M. Almiron ◽  
...  

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


2017 ◽  
Author(s):  
José Lourenço ◽  
Maricelia Maia de Lima ◽  
Nuno Rodrigues Faria ◽  
Andrew Walker ◽  
Moritz UG Kraemer ◽  
...  

2019 ◽  
Author(s):  
Andrew S. Paige ◽  
Shawna K. Bellamy ◽  
Barry W. Alto ◽  
Catherine L. Dean ◽  
Donald A. Yee

ABSTRACTFood quality and quantity serve as the basis for cycling of key chemical elements in trophic interactions, yet the role of nutrient stoichiometry in shaping host-parasite interactions is under appreciated. Most of the emergent mosquito-borne viruses affecting human health are transmitted by mosquitoes that inhabit container systems during their immature stages, where allochthonous input of detritus serves as the basal nutrients. Quantity and type of detritus (animal and plant) were manipulated in microcosms containing newly hatched Aedes aegypti mosquito larvae. Adult mosquitoes derived from these microcosms were allowed to ingest Zika virus infected blood and then tested for disseminated infection, transmission, and total nutrients (percent carbon, percent nitrogen, ratio of carbon to nitrogen). Treatments lacking high quality animal (insect) detritus significantly delayed development. Survivorship to adulthood was closely associated with the amount of insect detritus present. Insect detritus was positively correlated with percent nitrogen, which affected Zika virus infection. Disseminated infection and transmission decreased with increasing insect detritus and percent nitrogen. We provide the first definitive evidence linking nutrient stoichiometry to arbovirus infection and transmission in a mosquito using a model system of invasive Ae. aegypti and emergent Zika virus.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7920
Author(s):  
Sarah Cunze ◽  
Judith Kochmann ◽  
Lisa K. Koch ◽  
Elisa Genthner ◽  
Sven Klimpel

Background Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases. Methods As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product. Results The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species. Conclusion Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.


Sign in / Sign up

Export Citation Format

Share Document