Cell-bound Nanoparticles for Tissue Targeting and Immunotherapy: Engineering of the Particle-Membrane Interface

Author(s):  
Supriya Prakash ◽  
Ninad Kumbhojkar ◽  
John R. Clegg ◽  
Samir Mitragotri
Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Maria Tomoaia-Cotisel ◽  
Aurora Mocanu

The phase behaviour and surface structure of dipalmitoyl phosphatidyl choline (DPPC) monolayers at the air/water interface, in the absence and the presence of procaine, have been investigated by Langmuir-Blodgett (LB) technique and atomic force microscopy. The LB films were transferred on mica, at a controlled surface pressure, characteristic for the expanded liquid to condensed liquid phase transition of pure DPPC monolayers. The results indicate that procaine penetrates into and specifically interacts with phospholipid monolayers stabilizing the lipid membrane interface.


2020 ◽  
Vol 26 (27) ◽  
pp. 3251-3268
Author(s):  
Shweta Ramkar ◽  
Abhishek K. Sah ◽  
Nagendra Bhuwane ◽  
Ishwari Choudhary ◽  
Narayan Hemnani ◽  
...  

The pilosebaceous unit is the triad comprising of hair follicle, arrector pilli muscle, and sebaceous gland. Drug delivery to and through the hair follicles has garnered much attention of the researchers and the hair follicles represent an attractive target site via topical applications. They are bordered by capillaries and antigenpresenting cells, connected to the sebaceous glands and the bulge region of the hair follicle anchors the stem cells. The nano lipid carriers have the propensity to penetrate through the skin via transcellular route, intracellular route and follicular route. It has been established that nano lipid carriers have the potential for follicular drug delivery and provide some advantages over conventional pathways, including improved bioavailability, enhanced penetration depth, fast transport into the skin, tissue targeting and form a drug reservoir for prolonged release. This review describes the pilosebaceous unit (PSU) and related diseases and the recent lipid-based nanotechnology approaches for drug delivery to the follicular unit as well as related issues. Different types of nano lipid carriers, including ethosomes, liposomes, nanoparticles, solid lipid nanoparticles (SLNs), and nano lipid carriers (NLCs) have been reported for follicular drug delivery. Targeted drug delivery with nano-lipid carriers has the potential to augment the efficacy of drugs/bioactives to treat diseases of PSU. This review systematically introduces the activities of different formulations and the use of nano lipid carriers in treating PSU related disorders like alopecia, acne, and hirsutism.


Author(s):  
T. Romero ◽  
W. Me´rida

Transient water transport experiments on Nafion of different thicknesses were carried out in the temperature range of 30 to 70 °C. These experiments report on water transport measurements under activity gradients in the time domain for liquid and vapour equilibrated Nafion membranes. Using a permeability test rig with a gated valve, the water crossover was measured as a function of time. The typical response is shown as a time dependent flux, and it shows the dynamic transport from an initially dry condition up to the final steady state. Contrarily to previous reports from dynamic water transport measurements, where the activity gradient across the membrane is absent; in this work, the membrane was subjected to an activity gradient acting as the driving force to transport water from an environment with higher water activity to an environment with lower water activity through the membrane’s structure. Measurements explored temperature and membrane thickness variation effect on the transient response. Results showed dependency on temperature and a slower water transport rate across the vapour-membrane interface than for the liquid-membrane interface. These measurements showed the transport dependency on water content at the beginning of the experiment when the membrane was in a close-to-dry condition suggesting a transport phenomenon transition due to a reached critical water content value. The new protocol for transient measurements proposed here will allow the characterization of water transport dependency on membrane water content with a more rational representation of the membrane-environment interface.


2013 ◽  
Vol 34 (6) ◽  
pp. 1731
Author(s):  
M. Prado-Alvarez ◽  
G. Darmody ◽  
S. Lynch ◽  
A. Maloy ◽  
J. Cotterill ◽  
...  

2011 ◽  
Vol 100 (7) ◽  
pp. 1660-1667 ◽  
Author(s):  
Veronica Beswick ◽  
Adriana Isvoran ◽  
Pierre Nédellec ◽  
Alain Sanson ◽  
Nadège Jamin

2006 ◽  
Vol 3 (1) ◽  
pp. S20-S25 ◽  
Author(s):  
Christophe Chipot ◽  
Mounir Tarek

2007 ◽  
Vol 129 (2) ◽  
pp. 268-269 ◽  
Author(s):  
Siwarutt Boonyarattanakalin ◽  
Jianfang Hu ◽  
Sheryl A. Dykstra-Rummel ◽  
Avery August ◽  
Blake R. Peterson

Sign in / Sign up

Export Citation Format

Share Document