Fiber identification of braided composites using micro-computed tomography

2021 ◽  
pp. 100813
Author(s):  
Garrett W. Melenka ◽  
Ali Gholami
2020 ◽  
Vol 54 (25) ◽  
pp. 3895-3917 ◽  
Author(s):  
Garrett W Melenka ◽  
Cagri Ayranci

Braiding is an advanced textile manufacturing method that is used to produce two-dimensional and three-dimensional components. Unlike laminated structures, braids have interlaced yarns that form a continuity between layers. This structure allows for improved impact resistance, damage tolerance, and improved through-thickness reinforcement. Despite the numerous advantages of braided composites, braids also have shortcomings. Their highly complex fiber architecture presents challenges in the availability and choice of the strain measuring and characterization techniques. Advanced measurement methods such as optical strain measurement, micro-computed tomography, and in situ strain measurement are required. Optical strain measurement methods such as digital image correlation and high-speed imaging are necessary to accurately measure the complex deformation and failure that braided composites exhibit. X-ray-based micro-computed tomography measurements can provide detailed geometric and morphologic information for braided structures, which is necessary for accurately predicting the mechanical properties of braided structures. Finally, in situ strain measurement methods will provide detailed information on the internal deformation and strain that exists within braided structures. In situ sensors will also allow for in-service health monitoring of braided structures. This paper provides a detailed review of the aforementioned sensing technologies and their relation to the measurement of braided composite structures.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4003-4013 ◽  
Author(s):  
Brianna M Bruni-Bossio ◽  
Garrett W Melenka ◽  
Cagri Ayranci ◽  
Jason P Carey

There is an increasing demand for the use of “green”-based materials as reinforcement and matrix materials in composites. However, the ability of these natural-based materials to perform as consistently and reliably as conventional materials is still relatively unknown. A key importance in the viability of these materials is the evaluation of the content of voids and imperfections, which may affect the properties of the entire composite. In this study, the microstructure of tubular-braided composites manufactured from cellulose fibers and a partially bio-derived resin was studied with the use of micro-computed tomography. These methods were used to determine the effect of modifying braid angle, resin type, and curing method on fiber volume fraction, void volume, and void distribution. It was determined that the void content increased with the increase in braid angle, and vacuum-bagging reduced the total void content. The sample with the smallest braid angle produced with vacuum-bagged curing contained a void fraction of 1.5%. The results of this study proved that the materials used could be viable for further testing and development and that micro-computed tomography imaging is valuable for identifying how to improve consistency and minimize imperfections to create more accurate and reliable natural fiber-braided composites.


2015 ◽  
Vol 131 ◽  
pp. 384-396 ◽  
Author(s):  
Garrett W. Melenka ◽  
Eric Lepp ◽  
Benjamin K.O. Cheung ◽  
Jason P. Carey

2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


2018 ◽  
Author(s):  
Zoë E. Wilbur ◽  
◽  
Arya Udry ◽  
Arya Udry ◽  
Daniel M. Coleff ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


Sign in / Sign up

Export Citation Format

Share Document