Extending affective capabilities for medical assistive robots

Author(s):  
Agnese Augello ◽  
Ignazio Infantino ◽  
Giovanni Pilato ◽  
Gianpaolo Vitale
Keyword(s):  
2021 ◽  
Vol 11 (2) ◽  
pp. 815
Author(s):  
Husam Almusawi ◽  
Géza Husi

Impairments of fingers, wrist, and hand forearm result in significant hand movement deficiencies and daily task performance. Most of the existing rehabilitation assistive robots mainly focus on either the wrist training or fingers, and they are limiting the natural motion; many mechanical parts associated with the patient’s arms, heavy and expensive. This paper presented the design and development of a new, cost-efficient Finger and wrist rehabilitation mechatronics system (FWRMS) suitable for either hand right or left. The proposed machine aimed to present a solution to guide individuals with severe difficulties in their everyday routines for people suffering from a stroke or other motor diseases by actuating seven joints motions and providing them repeatable Continuous Passive Motion (CPM). FWRMS approach uses a combination of; grounded-exoskeleton structure to provide the desired displacement to the hand’s four fingers flexion/extension (F/E) driven by an indirect feed drive mechanism by adopting a leading screw and nut transmission; and an end-effector structure to provide angular velocity to the wrist flexion/ extension (F/E), wrist radial/ulnar deviation (R/U), and forearm supination/pronation (S/P) driven by a rotational motion mechanism. We employed a single dual-sided actuator to power both mechanisms. Additionally, this article presents the implementation of a portable embedded controller. Moreover, this paper addressed preliminary experimental testing and evaluation process. The conducted test results of the FWRMS robot achieved the required design characteristics and executed the motion needed for the continuous passive motion rehabilitation and provide stable trajectories guidance by following the natural range of motion (ROM) and a functional workspace of the targeted joints comfortably for all trainable movements by FWRMS.


Author(s):  
Gauri Tulsulkar ◽  
Nidhi Mishra ◽  
Nadia Magnenat Thalmann ◽  
Hwee Er Lim ◽  
Mei Ping Lee ◽  
...  

AbstractSocial Assistive Robotics is increasingly being used in care settings to provide psychosocial support and interventions for the elderly with cognitive impairments. Most of these social robots have provided timely stimuli to the elderly at home and in care centres, including keeping them active and boosting their mood. However, previous investigations have registered shortcomings in these robots, particularly in their ability to satisfy an essential human need: the need for companionship. Reports show that the elderly tend to lose interests in these social robots after the initial excitement as the novelty wears out and the monotonous familiarity becomes all too familiar. This paper presents our research facilitating conversations between a social humanoid robot, Nadine, and cognitively impaired elderly at a nursing home. We analysed the effectiveness of human–humanoid interactions between our robot and 14 elderly over 29 sessions. We used both objective tools (based on computer vision methods) and subjective tools (based on observational scales) to evaluate the recorded videos. Our findings showed that our subjects engaged positively with Nadine, suggesting that their interaction with the robot could improve their well-being by compensating for some of their emotional, cognitive, and psychosocial deficiencies. We detected emotions associated with cognitively impaired elderly during these interactions. This study could help understand the expectations of the elderly and the current limitations of Social Assistive Robots. Our research is aligned with all the ethical recommendations by the NTU Institutional Review Board.


Author(s):  
Chris Papadopoulos ◽  
Nina Castro ◽  
Abiha Nigath ◽  
Rosemary Davidson ◽  
Nicholas Faulkes ◽  
...  

AbstractThis trial represents the final stage of the CARESSES project which aimed to develop and evaluate a culturally competent artificial intelligent system embedded into social robots to support older adult wellbeing. A parallel group, single-blind randomised controlled trial was conducted across older adult care homes in England and Japan. Participants randomly allocated to the Experimental Group or Control Group 1 received a Pepper robot for up 18 h across 2 weeks. Two versions of the CARESSES artificial intelligence were tested: a fully culturally competent system (Experimental Group) and a more limited version (Control Group 1). Control Group 2 (Care As Usual) participants did not receive a robot. Quantitative outcomes of interest reported in the current paper were health-related quality of life (SF-36), loneliness (ULS-8), and perceptions of robotic cultural competence (CCATool-Robotics). Thirty-three residents completed all procedures. The difference in SF-36 Emotional Wellbeing scores between Experimental Group and Care As Usual participants over time was significant (F[1] = 6.614, sig = .019, ηp2 = .258), as was the comparison between Any Robot used and Care As Usual (F[1] = 5.128, sig = .031, ηp2 = .146). There were no significant changes in SF-36 physical health subscales. ULS-8 loneliness scores slightly improved among Experimental and Control Group 1 participants compared to Care As Usual participants, but this was not significant. This study brings new evidence which cautiously supports the value of culturally competent socially assistive robots in improving the psychological wellbeing of older adults residing in care settings.


AI Magazine ◽  
2015 ◽  
Vol 36 (4) ◽  
pp. 23-33 ◽  
Author(s):  
Domen Novak ◽  
Robert Riener

Rehabilitation robots physically support and guide a patient's limb during motor therapy, but require sophisticated control algorithms and artificial intelligence to do so. This article provides an overview of the state of the art in this area. It begins with the dominant paradigm of assistive control, from impedance-based cooperative controller through electromyography and intention estimation. It then covers challenge-based algorithms, which provide more difficult and complex tasks for the patient to perform through resistive control and error augmentation. Furthermore, it describes exercise adaptation algorithms that change the overall exercise intensity based on the patient's performance or physiological responses, as well as socially assistive robots that provide only verbal and visual guidance. The article concludes with a discussion of the current challenges in rehabilitation robot software: evaluating existing control strategies in a clinical setting as well as increasing the robot's autonomy using entirely new artificial intelligence techniques.


2016 ◽  
Vol 12 (4) ◽  
pp. 352-372 ◽  
Author(s):  
P. Encarnação ◽  
T. Leite ◽  
C. Nunes ◽  
M. Nunes da Ponte ◽  
K. Adams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document