Bio-inspired Hierarchically Porous Membrane with Superhydrophobic Antifouling Surface for Solar-driven Dehumidifying System

Author(s):  
Xuanxuan Du ◽  
Jinhao Xu ◽  
Qingshuai Yan ◽  
Binjie Xin ◽  
Chun Wang
2020 ◽  
Vol 10 (8) ◽  
pp. 2848 ◽  
Author(s):  
Lijuan Huang ◽  
Ziru Jia ◽  
Hongying Liu ◽  
Xitian Pi ◽  
Jiawen Zhou

This study aims to develop an oxygen regeneration layer sandwiched between multiple porous polyurethanes (PU) to improve the performance of implantable glucose sensors. Sensors were prepared by coating electrodes with platinum nanoparticles, Nafion, glucose oxidase and sandwich hierarchically porous membrane with an oxygen supplement function (SHPM-OS). The SHPM-OS consisted of a hierarchically porous structure synthesized by polyethylene glycol and PU and a catalase (Cat) layer that was coated between hierarchical membranes and used to balance the sensitivity and linearity of glucose sensors, as well as reduce the influence of oxygen deficiency during monitoring. Compared with the sensitivity and linearity of traditional non-porous (NO-P) sensors (35.95 nA/mM, 0.9987, respectively) and single porous (SGL-P) sensors (45.3 nA /mM, 0.9610, respectively), the sensitivity and linearity of the SHPM-OS sensor was 98.45 nA/mM and 0.9989, respectively, which was more sensitive with higher linearity. The sensor showed a response speed of five seconds and a relative sensitivity of 90% in the first 10 days and remained 78% on day 20. This sensor coated with SHPM-OS achieved rapid responses to changes of glucose concentration while maintaining high linearity for long monitoring times. Thus, it may reduce the difficulty of back-end hardware module development and assist with effective glucose self-management for people with diabetes.


1997 ◽  
Vol 35 (8) ◽  
pp. 137-144 ◽  
Author(s):  
Tsuyoshi Nomura ◽  
Takao Fujii ◽  
Motoyuki Suzuki

Porous membrane of poly(tetrafluoroethylene) (PTFE) was formed on the surface of porous ceramic tubes by means of heat treatment of the PTFE particles deposit layer prepared by filtering PTFE microparticles emulsified in aqueous phase. By means of inert gas permeation, pore size was determined and compared with scanning electron micrograph observation. Also rejection measurement of aqueous dextran solutions of wide range of molecular weights showed consistent results regarding the pore size. Since the membrane prepared by this method is stable and has unique features derived from PTFE, it is expected that the membrane has interesting applications in the field of water treatment. Membrane separation of activated sludge by this composite membrane and original ceramics membrane showed that the PTFE membrane gives better detachability of the cake layer formed on the membrane. This might be due to the hydrophobic nature of the PTFE skin layer.


2014 ◽  
Vol 3 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Yasemin Hakat ◽  
Trupti Kotbagi ◽  
Martin Bakker

1986 ◽  
Vol 51 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Jan Langmaier ◽  
František Opekar

Gold porous membrane electrode has been used for the potentiometric determination of small amounts of sulfur dioxide absorbed in the solutions of sodium tetrachloromercurate or sodium hydroxide. Sulfur dioxide is released by the reaction with an acid into a stream of nitrogen and led to the electrode immersed into the solution of iodine monochloride. Part of SO2 penetrates through the membrane pores into the solution where it is oxidized. The electrode redox potential change is a measure of the SO2 concentration in the absorption solution. In the solution of 1 . 10-5 M[ICl2]- in 0.02 M-HClO4 the limit of quantitation was found to be 0.07 ng SO2 . ml-1. The relative standard deviations of 1.4% and 2.5% were found for the determinations of 10 ng and 0.5 ng of SO2, respectively. Higher concentrations of H2S interfere only in the hydroxide solution. About 10 samples can be analyzed per one hour.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 785
Author(s):  
Tai-Feng Hung ◽  
Tzu-Hsien Hsieh ◽  
Feng-Shun Tseng ◽  
Lu-Yu Wang ◽  
Chang-Chung Yang ◽  
...  

Rational design and development of the electrodes with high-mass loading yet maintaining the excellent electrochemical properties are significant for a variety of electrochemical energy storage applications. In comparison with the slurry-casted electrode, herein, a hierarchically porous activated carbon (HPAC) electrode with higher mass loading (8.3 ± 0.2 mg/cm2) is successfully prepared. The pouch-type symmetric device (1 cell) with the propylene carbonate-based electrolyte shows the rate capability (7.1 F at 1 mA/cm2 and 4.8 F at 10 mA/cm2) and the cycling stability (83% at 12,000 cycles). On the other hand, an initial discharge capacitance of 32.4 F and the capacitance retention of 96% after 30,000 cycles are delivered from a pouch-type symmetric supercapacitor (five cells). The corresponding electrochemical performances are attributed to the fascinating properties of the HPAC and the synergistic features of the resulting electrode.


2021 ◽  
Author(s):  
Zhigang Ren ◽  
peng zhao ◽  
Ye Zhang ◽  
Yang Yu ◽  
xiaoxuan lv ◽  
...  

Micron-sized carbon spheres synthesized via pickering emulsions has attracted much attention in recent two years. In present paper, we prepared palladium (Pd) and nitrogen co-embedded carbon microspheres for formaldehyde (HCHO)...


Sign in / Sign up

Export Citation Format

Share Document