Pyrene-Functionalized Mesoporous Silica as a Fluorescent Nanosensor for Selective Detection of Hg2+ in Aqueous Solution

Author(s):  
Zhaojuan Wang ◽  
Zhipeng Gao ◽  
Min Qiao ◽  
Junxia Peng ◽  
Liping Ding
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abeer M. Beagan

In this study, mesoporous silica nanoparticles (MSNs) were synthesised using the Stober method and functionalised with cysteine (MSN-Cys) for removal of Methylene Blue (MB) from aqueous solution using the batch method. The adsorbent nanoparticles were characterised by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), FTIR, BET, and TGA. Several influential factors on the adsorption of MB onto the surface of MSN-Cys particles were investigated, including pH, initial concentration, and contact time. The adsorption capacity of MB from aqueous solution increased from circa 70 mg/g MSN-Cys in acidic media to circa 140 mg/g MSN-Cys in basic media. Adsorption isotherms and kinetic models of adsorption were used to clarify the adsorption process. The measured adsorption isotherm was fitted with a Freundlich model for all solutions, and the kinetic model was determined to be pseudo-second-order.


2013 ◽  
Vol 726-731 ◽  
pp. 2409-2412
Author(s):  
Xiao Feng Cai ◽  
Kang Wei Ji ◽  
Wan Hao Wu ◽  
Jie Hou ◽  
Shi You Hao

Amino-functionalized mesoporous silica (AFMS) with high amino loading, high surface area, and large pore size was synthesized using the anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as template and 3-aminopropyltriethoxysilane (APTES) as co-structure directing agent (CSDA). The synthesized AFMS was characterized by N2adsorption-desorption, TEM and elemental analyzer. The results of the removal of Cd2+from aqueous solution showed that the pH value of aqueous solution affected the removal efficiency of Cd2+greatly, and that unary adsorption isotherm of Cd2+on the AFMS was well described by the Sips isotherm model, in which the adsorption capacity was 2.43 mmol/g for Cd2+, much higher than the literature data.


2014 ◽  
Vol 38 (12) ◽  
pp. 6017-6024 ◽  
Author(s):  
Jingjing Cui ◽  
Shangfeng Wang ◽  
Kai Huang ◽  
Yongsheng Li ◽  
Wenru Zhao ◽  
...  

A newly developed fluorescent “on–off” chemosensor presents high selectivity towards Cu2+ with detection limit as low as 0.28 μM.


Sign in / Sign up

Export Citation Format

Share Document