Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits

2005 ◽  
Vol 43 (3-4) ◽  
pp. 221-227 ◽  
Author(s):  
Shao HongBo ◽  
Liang ZongSuo ◽  
Shao MingAn ◽  
Sun ShiMeng ◽  
Hu ZanMin
2020 ◽  
Vol 24 (12) ◽  
pp. 974-981
Author(s):  
Imran Haider ◽  
Muhammad Aown Sammar Raza ◽  
Rashid Iqbal ◽  
Muhammad Usman Aslam ◽  
Muhammad Habib-ur-Rahman ◽  
...  

2021 ◽  
Vol 50 (4) ◽  
pp. 1127-1132
Author(s):  
Wubo Li ◽  
Meng Li ◽  
Yunshuo Xu ◽  
Yan Shi

Effects of different dosages of potassium silicate fertilizer on photosynthetic characteristics and yield of winter wheat under field conditions were studied. Four different dosages: 0, 45, 90 and 135kg/ha were applied. Results showed that the chlorophyll content, net photosynthetic rate of wheat flag leaf firstly increased and then decreased with the increase of levels of potassium silicate fertilizer. By the change of SPAD values after flowering, when the application of potassium silicate fertilizer was 90 kg/ha, the existence time of chlorophyll in flag leaf was significantly long, and the net photosynthetic rate was significantly increased. The 1000-grain weight of winter wheat significantly increased and the yield the highest. Overall, when the applied amount of potassium silicate fertilizer was 90 kg/ha, the performances of winter wheat were best. Bangladesh J. Bot. 50(4): 1127-1132, 2021 (December)


2021 ◽  
pp. 737-746
Author(s):  
Weili Wang ◽  
Xuhui Zhang ◽  
Zhaotang Shang

The variation characteristics of growth stages of winter wheat (Triticum aestivum L.) with the climate change were measured by designing its stability and prediction model. Results showed the trend of stability of growth stage of winter wheat in Jiangsu province of China was an S-shaped curve indicating the growth of winter wheat was more stable in late stage. The lengths of early and late stages of growth were in inverse proportion. Specifically, when the early stage was prolonged, the late stage was shortened, which ensured the relative stability of the length of growth stage. The length of growth stage was correlated with the meteorological conditions. Thus, favorable meteorological conditions contributed to the stability of growth stages of winter wheat. Along with the climate change, the basic statistical characteristics of growth stage remained stable. Each stage drifted moderately under the variation of meteorological conditions, typically during the stage of vegetative growth. The growth process can be regulated by means of variety improvement, adjustment of sowing time and density, reasonable fertilization, and the use of growth regulators. These measures are able to counteract the influences of climate change on winter wheat production and ensure the production security. Bangladesh J. Bot. 50(3): 737-746, 2021 (September) Special


Sign in / Sign up

Export Citation Format

Share Document