Measurements and statistics of mixture fraction and scalar dissipation rates in turbulent non-premixed jet flames

2013 ◽  
Vol 160 (9) ◽  
pp. 1767-1778 ◽  
Author(s):  
Jeffrey A. Sutton ◽  
James F. Driscoll
2013 ◽  
Vol 79 (804) ◽  
pp. 1685-1693 ◽  
Author(s):  
Yosuke SUENAGA ◽  
Hideki YANAOKA ◽  
Michio KITANO ◽  
Daisuke MOMOTORI

Author(s):  
Pravin Nakod ◽  
Saurabh Patwardhan ◽  
Ishan Verma ◽  
Stefano Orsino

Emission standard agencies are coming up with more stringent regulations on soot, given its adverse effect on human health. It is expected that Environmental Protection Agency (EPA) will soon place stricter regulations on allowed levels of the size of soot particles from aircraft jet engines. Since, aircraft engines operate at varying operating pressure, temperature and air-fuel ratios, soot fraction changes from condition to condition. Computation Fluid Dynamics (CFD) simulations are playing a key role in understanding the complex mechanism of soot formation and the factors affecting it. In the present work, soot formation prediction from numerical analyses for turbulent kerosene-air diffusion jet flames at five different operating pressures in the range of 1 atm. to 7 atm. is presented. The geometrical and test conditions are obtained from Young’s thesis [1]. Coupled combustion-soot simulations are performed for all the flames using steady diffusion flamelet model for combustion and Mass-Brookes-Hall 2-equation model for soot with a 2D axisymmetric mesh. Combustion-Soot coupling is required to consider the effect of soot-radiation interaction. Simulation results in the form of axial and radial profiles of temperature, mixture fraction and soot volume fraction are compared with the corresponding experimental measured profiles. The results for temperature and mixture fraction compare well with the experimental profiles. Predicted order of magnitude and the profiles of the soot volume fraction also compare well with the experimental results. The correct trend of increasing the peak soot volume fraction with increasing the operating pressure is also captured.


2019 ◽  
Vol 208 ◽  
pp. 330-350 ◽  
Author(s):  
Hernan Olguin ◽  
Arne Scholtissek ◽  
Sebastian Gonzalez ◽  
Felipe Gonzalez ◽  
Matthias Ihme ◽  
...  

2000 ◽  
Vol 123 (2) ◽  
pp. 341-346 ◽  
Author(s):  
S. M. deBruynKops ◽  
J. J. Riley

The application of mixture fraction based models to large-eddy simulations (LES) of nonpremixed turbulent combustion requires information about mixing at length scales not resolved on the LES grid. For instance, the large-eddy laminar flamelet model (LELFM) takes the subgrid-scale variance and the filtered dissipation rate of the mixture fraction as inputs. Since chemical reaction rates in nonpremixed turbulence are largely governed by the mixing rate, accurate mixing models are required if mixture fraction methods are to be successfully used to predict species concentrations in large-eddy simulations. In this paper, several models for the SGS scalar variance and the filtered scalar dissipation rate are systematically evaluated a priori using benchmark data from a DNS in homogeneous, isotropic, isothermal turbulence. The mixing models are also evaluated a posteriori by applying them to actual LES data of the same flow. Predictions from the models that depend on an assumed form for the scalar energy spectrum are very good for the flow considered, and are better than those from models that rely on other assumptions.


2005 ◽  
Author(s):  
Mohsen M. Abou-Ellail ◽  
Karam R. Beshay ◽  
David R. Halka

The present work is a numerical simulation of the, piloted, non-premixed, methane–air flame structure in a new mathematical imaging domain. This imaging space has the mixture fraction of diffusion flame Z1 and mixture fraction of pilot flame Z2 as independent coordinates to replace the usual physical space coordinates. The predications are based on the solution of two–dimensional set of transformed second order partial differential conservation equations describing the mass fractions of O2, CH4, CO2, CO, H2O, H2 and sensible enthalpy of the combustion products which are rigorously derived and solved numerically. A three–step chemical kinetic mechanism is adopted. This was deduced in a systematic way from a detailed chemical kinetic mechanism by Peters (1985). The rates for the three reaction steps are related to the rates of the elementary reactions of the full reaction mechanism. The interaction of the pilot flame with the non-premixed flame and the resulting modifications to the structure and chemical kinetics of the flame are studied numerically for different values of the scalar dissipation rate tensor. The dissipation rate tensor represents the flame stretching along Z1, the main mixture fraction, and in the perpendicular direction, along Z2, the pilot mixture fraction. The computed flame temperature contours are plotted in the Z1-Z2 plane for fixed values of the dissipation rate along Z1 and Z2.These temperature contours show that the flame will become unstable when the dissipate rates along Z1 and Z2 increase, simultaneously, to the limiting value for complete flame extinction of 45 s−1. However, the diffusion flame will extinguish for dissipate rates less than 20 1/s, if unpiloted. It is also noticed that the flame will remain stable if the dissipation rate along Z2 is increased to the limiting value, while the dissipation rate, along Z2, remains constant at a value less than 30 s−1.


2013 ◽  
Vol 149 ◽  
pp. 46-60 ◽  
Author(s):  
Nicholas B. Engdahl ◽  
Timothy R. Ginn ◽  
Graham E. Fogg

Author(s):  
M. Chrigui ◽  
A. Sadiki ◽  
J. Janicka

Spray dispersion, evaporation and combustion have been numerically studied in a complex industrial configuration, which consists in a single annular combustor that was experimentally measured by Rolls-Royce-Deutschland Company. Simulations have been achieved using the Eulerian-Lagrangian approach. The computations of the continuous phase have been performed by means of RANS simulations. Though the k-ε as well as the Reynolds Stress model (Jones-Musonge) have been used for turbulence modeling. The 3D-computations have been performed in a fully two-way coupling. The effects of turbulence on droplets distribution are accounted for using the Markov sequence dispersion model. The equilibrium as well as the non-equilibrium evaporation model have been applied. In order to account for the combustion, the diffusion flame model is chosen. It relies on the computation of the mixture fraction that has been affected by the presence of vapor source terms. For the interaction of the turbulence with the chemistry, the mixture fraction variance has also been solved. For that purpose a presumed beta-PDF function has been considered. The equilibrium and the flamelet chemistry approaches have been used for the generation of the chemistry tables. The performed simulations have also been compared to commercial CFD-codes. From there one observes, that the obtained results using the mentioned sub-models combination agree most favorably with experimental measurements. One noted that the Reynolds Stress model provided smoother temperature distribution compared to k-ε. The flamelet model has been performed using three different scalar dissipation rates. One observes that differences are mainly located at the nozzle exit, where the scalar dissipation rate has got the highest value. Although the comparison between the numerical results and the experimental data was possible only at the combustor exit, due to the limitation on the measurement techniques, one can reiterate that the combination of the following sub-models: thermodynamically consistent model for the turbulence modulation, Langmuir-Knudsen non-equilibrium model for the evaporation, Reynolds Stress Model for the turbulence and flamelet model for the chemistry establish a reliable complete model that seems to allows a better description of reactive multi-phase flow studied in the frame of this work.


Sign in / Sign up

Export Citation Format

Share Document