Estimation of the anisotropic plastic property using single spherical indentation—An FEM study

2009 ◽  
Vol 47 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Akio Yonezu ◽  
Yoshiki Kuwahara ◽  
Keishi Yoneda ◽  
Hiroyuki Hirakata ◽  
Kohji Minoshima
2010 ◽  
Vol 02 (02) ◽  
pp. 355-379 ◽  
Author(s):  
KEISHI YONEDA ◽  
AKIO YONEZU ◽  
HIROYUKI HIRAKATA ◽  
KOHJI MINOSHIMA

This study proposes a method of reverse analysis to estimate the anisotropic plastic properties of engineering steels by spherical indentation. The method takes into consideration materials that obey the work-hardening law and show in-plane anisotropic yield stress. Finite element analysis was first carried out to compute the indentation behavior of such materials, showing that a permanent impression exhibited an anisotropic shape which was strongly dependent on the orthotropic axis. Based on the anisotropy of the impression geometry, we developed a simple approach to determine the yield stress, work-hardening exponent and yield stress ratio. The approach consists of several functions related to the parameters of two impression geometries, produced by dual spherical indentations with different indentation forces. Since the present method uses only two impression geometries and does not necessitate indentation force — displacement curves (indentation curves), it is a particularly useful technique to evaluate "indistinguishable materials" which are special sets of materials with distinct plastic properties, yet yield almost identical indentation curves.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 456
Author(s):  
Dongsheng Qian ◽  
Chengfei Ma ◽  
Feng Wang

Hot rolling is an essential process for the shape-forming of bearing steel. It plays a significant role in the formation and distribution of flow lines. In this work, the effect of flow lines is investigated by analyzing the microstructure and mechanical anisotropy of hot-rolled bearing steel. It was found that carbides rich with Cr and Mn elements are distributed unevenly along the flow-line direction of the hot-rolled bearing steel. Moreover, the mechanical characterization indicates that ultimate tensile strength and yield strength do not have any significant difference in two directions. Nevertheless, an ultrahigh section shrinkage of 57.51% is obtained in the 0° sample that has parallel flow lines, while 90° sample shows poor section shrinkage. The uneven distributed carbides will affect the direction and speed of crack propagation during tensile deformation. Therefore, the 0° and 90° samples exhibit great difference in plastic property. Meanwhile, after tensile deformation, a delaminated texture is observed in the flow lines, which may be caused by different degrees of deformation of grains due to the uneven distribution of carbides. The results of this work may provide guidance for controlling and optimizing flow lines in the manufacturing of bearing rings.


2005 ◽  
Vol 127 (1) ◽  
pp. 33-37 ◽  
Author(s):  
V. Gonda ◽  
J. den Toonder ◽  
J. Beijer ◽  
G. Q. Zhang ◽  
L. J. Ernst

The thermo-mechanical integration of polymer films requires a precise knowledge of material properties. Nanoindentation is a widely used testing method for the determination of material properties of thin films such as Young’s modulus and the hardness. An important assumption in the analysis of the indentation is that the indented medium is a semi-infinite plane or half space, i.e., it has an “infinite thickness.” In nanoindentation the analyzed material is often a thin film that is deposited on a substrate. If the modulus ratio is small, (soft film on hard substrate) and the penetration depth is small too, then the Hertzian assumption does not hold. We investigate this situation with spherical and conical indentation. Measurement results are shown using spherical indentation on a visco-elastic thin polymer film and a full visco-elastic characterization is presented.


2009 ◽  
Vol 24 (3) ◽  
pp. 784-800 ◽  
Author(s):  
Ling Liu ◽  
Nagahisa Ogasawara ◽  
Norimasa Chiba ◽  
Xi Chen

Indentation is widely used to extract material elastoplastic properties from measured force-displacement curves. Many previous studies argued or implied that such a measurement is unique and the whole material stress-strain curve can be measured. Here we show that first, for a given indenter geometry, the indentation test cannot effectively probe material plastic behavior beyond a critical strain, and thus the solution of the reverse analysis of the indentation force-displacement curve is nonunique beyond such a critical strain. Secondly, even within the critical strain, pairs of mystical materials can exist that have essentially identical indentation responses (with differences below the resolution of published indentation techniques) even when the indenter angle is varied over a large range. Thus, fundamental elastoplastic behaviors, such as the yield stress and work hardening properties (functions), cannot be uniquely determined from the force-displacement curves of indentation analyses (including both plural sharp indentation and deep spherical indentation). Explicit algorithms of deriving the mystical materials are established, and we qualitatively correlate the sharp and spherical indentation analyses through the use of critical strain. The theoretical study in this paper addresses important questions of the application range, limitations, and uniqueness of the indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material constitutive properties.


Sign in / Sign up

Export Citation Format

Share Document