Prediction of the diet energy digestion using kernel extreme learning machine: A case study with Holstein dry cows

2020 ◽  
Vol 169 ◽  
pp. 105231 ◽  
Author(s):  
Qiang Fu ◽  
Weizheng Shen ◽  
Xiaoli Wei ◽  
Yonggen Zhang ◽  
Hangshu Xin ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Jianhua Cao ◽  
Yancui Shi ◽  
Dan Wang ◽  
Xiankun Zhang

In petroleum exploration, the acoustic log (DT) is popularly used as an estimator to calculate formation porosity, to carry out petrophysical studies, or to participate in geological analysis and research (e.g., to map abnormal pore-fluid pressure). But sometime it does not exist in those old wells drilled 20 years ago, either because of data loss or because of just being not recorded at that time. Thus synthesizing the DT log becomes the necessary task for the researchers. In this paper we propose using kernel extreme learning machine (KELM) to predict missing sonic (DT) logs when only common logs (e.g., natural gamma ray: GR, deep resistivity: REID, and bulk density: DEN) are available. The common logs are set as predictors and the DT log is the target. By using KELM, a prediction model is firstly created based on the experimental data and then confirmed and validated by blind-testing the results in wells containing both the predictors and the target (DT) values used in the supervised training. Finally the optimal model is set up as a predictor. A case study for wells in GJH survey from the Erdos Basin, about velocity inversion using the KELM-estimated DT values, is presented. The results are promising and encouraging.


2015 ◽  
Vol 134 ◽  
pp. 109-117 ◽  
Author(s):  
Shahaboddin Shamshirband ◽  
Kasra Mohammadi ◽  
Hui-Ling Chen ◽  
Ganthan Narayana Samy ◽  
Dalibor Petković ◽  
...  

Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


Sign in / Sign up

Export Citation Format

Share Document