Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone

2021 ◽  
Vol 186 ◽  
pp. 106206
Author(s):  
Khem Raj Gautam ◽  
Li Rong ◽  
Ahsan Iqbal ◽  
Guoqiang Zhang
2021 ◽  
Vol 25 (4) ◽  
pp. 23-39
Author(s):  
Nebras Q. Hussein ◽  
◽  
Sadiq S. Muhsun ◽  
Zainab T. Al-Sharify ◽  
Huda T. Hamed ◽  
...  

Efforts were made in this search to design a physical and computer model using the CFD techniques to simulate the problem of transporting pollutants through a porous media in unsteady state case. A physical model was built to measure the transmission of a copper nitrate pollutant at an initial concentration of 25 mg/l in a medium consists of (sand + gravel) and study the movement of the pollutant through. Then the results of the pollutant transport through used in the physical model were entered as entry data to the CFD simulated model using COMSOL 5.4. Software. The results of the CFD simulated model showed that the change in the inlet velocity to more than 20% of the initial velocity increases the pollutant concentration and reduces the time wanted to reach the highest value of the pollutant, while reducing the inlet velocity to less than 20% of the initial velocity, cause to decrease the concentration and increase the time to reach the highest pollutant value. When changing the porosity by (30%, -15%) of the initial porosity, it was noticed that increasing the porosity value reduces the pollutant concentration and increases the time required to reach the highest value of the pollutant. while when the porosity decreases to 15% of the initial porosity, the concentration increases the time decreases to reach the highest value of the pollutant at all control points. The adsorption factor has a noticeable effect on the emergence of the pollutant, while the temperature change was almost imperceptible for all degrees. However, the results of laboratory work were compared with the results of the CFD simulated model, which showed a good match between them.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2965 ◽  
Author(s):  
Augusto Della Torre ◽  
Gianluca Montenegro ◽  
Angelo Onorati ◽  
Sumit Khadilkar ◽  
Roberto Icarelli

Plate heat exchangers including offset-strip fins or dimple-type turbulators have a wide application in the automotive field as oil coolers for internal combustion engines and transmissions. Their optimization is a complex task since it requires targeting different objectives: High compactness, low pressure drop and high heat-transfer efficiency. In this context, the availability of accurate Computational Fluid Dynamics (CFD) simulation models plays an important role during the design phase. In this work, the development of a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins and dimples, is presented. The paper addresses the modeling problem at different scales, ranging from the characteristic size of the turbulator geometry (typically µm–mm) to the full scale of the overall device (typically cm–dm). The simulation framework is based on multi-scale concept, which applies: (a) Detailed simulations for the characterization of the micro-scale properties of the turbulator, (b) an upscaling approach to derive suitable macro-scale models for the turbulators and (c) full-scale simulations of the entire cooler, including the porous models derived for the smaller scales. The model is validated comparing with experimental data under different operating conditions. Then, it is adopted to investigate the details of the fluid dynamics and heat-transfer process, providing guidelines for the optimization of the device.


2014 ◽  
Vol 9 (2) ◽  
pp. JFST0018-JFST0018 ◽  
Author(s):  
Miho SEIKE ◽  
Yasuhito EJIRI ◽  
Nobuyoshi KAWABATA ◽  
Masato HASEGAWA

2020 ◽  
Vol 81 (9) ◽  
pp. 2004-2010
Author(s):  
Yingchen Cao ◽  
Bowen Gu ◽  
Alexander Sonnenburg ◽  
Wilhelm Urban

Abstract The goal of the present paper is to investigate the aeration process and the enhanced effect of baffles in a full-scale commercial membrane bioreactor (MBR) system configured with a flat sheet (FS) membrane module. Through a computational fluid dynamics (CFD) simulation, two aerated FS membrane modules for full-scale applications with 26 membrane sheets were simulated. The numerical results indicate that the presence of baffles and the distances between the baffle and the outmost membrane sheet have a minor influence on the area-weighted shear stress for full-scale MBRs. In addition, bubble size and the bottom distance between the aerator and membrane bottom do not affect the average shear stress of full-scale FS membrane modules much. However, an increase in air flow rate has a significant effect on the area-weighted shear stress. A large FS membrane module is recommended, as it could achieve the same cleaning effect as the small one with a lower specific aeration demand for membranes.


2015 ◽  
Author(s):  
Hans Jørgen Mørch ◽  
Thomas Larsen ◽  
Erik Mostert ◽  
Karl Marius Norschau ◽  
Gunnar Semb

Through use of state of the art tools for flow analysis the aims to establish a methodology to determine the performance of a high speed planing craft both in calm water and in waves. Verification against full scale measurements is conducted. The ability to maintain speed in waves is of great interest -both with respect to added resistance and with respect to safe operation and loads on the crew from accelerations. Full scale measurements and CFD (Computational Fluid Dynamics) were conducted on a Norsafe Magnum 850fast patrol boat. The measurements have been conducted during a boat challenge along the Iberian coast. The challenge was run in advance of the HSBO (High Speed Boat Forum) which was held in Lisbon, Portugal, May2015.CFD simulations at similar conditions to the measurements are used for validation. It is further shown how CFD can be used to expand operational envelopes beyond the point where full scale measurements are applicable. This is especially relevant for the acceleration loads on the crew which is often the limiting factor of small HSC (High Speed Crafts). Pressure loads are extracted from the CFD and are evaluated against the current standards for life boats. Various criteria are discussed and the most relevant are analyzed for the measurement results and the CFD simulation. An operational envelope where the different criteria are combined is suggested.


Sign in / Sign up

Export Citation Format

Share Document