A complementary numerical and experimental study of the influence of Reynolds number on theoretical models for wingtip vortices

2019 ◽  
Vol 180 ◽  
pp. 176-189 ◽  
Author(s):  
J. Hermenegildo García-Ortiz ◽  
A. Domínguez-Vázquez ◽  
J.J. Serrano-Aguilera ◽  
L. Parras ◽  
C. del Pino
1997 ◽  
Vol 119 (3) ◽  
pp. 416-421 ◽  
Author(s):  
Jim Bonvouloir

Several different configurations of single-stage ferrofluidic seals were tested on a spindle which was capable of operating at very high rotational speeds (up to 55 KRPM). A dimensionless number based on the ratio of magnetic force to centrifugal force was defined. It was discovered that this ratio is not a good predictor of high speed seal failure. Reynolds number was found to be a better predictor of seal failure; therefore an empirically derived model for predicting seal failure based on Reynolds number is proposed. The data herein may provide a basis for developing new theoretical models for ferrofluidic seal failures at high speed.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1779-1789 ◽  
Author(s):  
Syed Ahmed ◽  
Salim Kazi ◽  
Ghulamullah Khan ◽  
Mohd Zubir ◽  
Mahidzal Dahari ◽  
...  

Experimental study of nanofluid flow and heat transfer to fully developed turbulent forced convection flow in a uniformly heated tubular horizontal backward-facing step has reported in the present study. To study the forced convective heat transfer coefficient in the turbulent regime, an experimental study is performed at a different weight concentration of Al2O3 nanoparticles. The experiment had conducted for water and Al2O3 -water nanofluid for the concentration range of 0 to 0.1 wt.% and Reynolds number of 4000 to 16000. The average heat transfer coefficient ratio increases significantly as Reynolds number increasing, increased from 9.6% at Reynolds number of 4000 to 26.3% at Reynolds number of 16000 at the constant weight concentration of 0.1%. The Al2O3 water nanofluid exhibited excellent thermal performance in the tube with a backwardfacing step in comparison to distilled water. However, the pressure losses increased with the increase of the Reynolds number and/or the weight concentrations, but the enhancement rates were insignificant.


1979 ◽  
Vol 23 (02) ◽  
pp. 140-156
Author(s):  
P. N. Joubert ◽  
P. H. Hoffmann

Wind tunnel tests were performed to determine the viscous resistance and its components for a 0.564-CB model from the BSRA Trawler Series. It was found that the sum of the pressure and skin friction resistance coefficients agreed well with the viscous resistance coefficient determined from drag balance tests. The range of Reynolds number examined was from 1.15 × 106 to 5.17 × 106. The results for the viscous resistance and its components were fitted using least-squares methods to various equations. The results were also compared with the results of previous tests done at the University of Melbourne on models of Lucy Ash-. ton and a 0.80-CB tanker. It was found that the skin friction and viscous resistance coefficients had curves of quite different position and slope. Local skin friction distribution showed noteworthy differences, especially at the stern, with high values at the keel and low values approaching the waterline.


Author(s):  
Fabian Dietmann ◽  
Michael Casey ◽  
Damian M. Vogt

Abstract Further validation of an analytic method to calculate the influence of changes in Reynolds number, machine size and roughness on the performance of axial and radial turbocompressors is presented. The correlation uses a dissipation coefficient as a basis for scaling the losses with changes in relative roughness and Reynolds number. The original correlation from Dietmann and Casey [6] is based on experimental data and theoretical models. Evaluations of five numerically calculated compressor stages at different flow coefficients are presented to support the trends of the correlation. It is shown that the sensitivity of the compressor performance to Reynolds and roughness effects is highest for low flow coefficient radial stages and steadily decreases as the design flow coefficient of the stage and the hydraulic diameter of the flow channels increases.


Author(s):  
Nadir Yilmaz ◽  
Brian C. Hogan ◽  
Humberto Bocanegra ◽  
A. Burl Donaldson ◽  
Walt Gill

The bidirectional velocity probe has been used in various flames to measure local velocity. The device is based on the pressure difference between a closed forward facing cavity and a closed rearward facing cavity. The probes have been noted to indicate a pressure difference greater than that which would be predicted based on Bernoulli's equation. Each device must be experimentally calibrated in a wind tunnel at similar Reynolds number to determine its “amplification factor.” This study uses PIV, flow visualization and CFD to examine the flow field around the probe, as well as an experimental study which compares various probe configurations for measurement of velocity by pressure differential. The conclusion is that the amplification factor is indeed greater than unity but use of the wind tunnel for calibration is questionable.


1996 ◽  
Vol 118 (2) ◽  
pp. 408-413 ◽  
Author(s):  
M. Kilic ◽  
X. Gan ◽  
J. M. Owen

This paper describes a combined computational and experimental study of the turbulent flow between two contrarotating disks for −1 ≤ Γ ≤ 0 and Reφ ≈ 1.2 × 106, where Γ is the ratio of the speed of the slower disk to that of the faster one and Reφ is the rotational Reynolds number. The computations were conducted using an axisymmetric elliptic multigrid solver and a low-Reynolds-number k–ε turbulence model. Velocity measurements were made using LDA at nondimensional radius ratios of 0.6 ≤ x ≤ 0.85. For Γ = 0, the rotor–stator case, Batchelor-type flow occurs: There is radial outflow and inflow in boundary layers on the rotor and stator, respectively, between which is an inviscid rotating core of fluid where the radial component of velocity is zero and there is an axial flow from stator to rotor. For Γ = −1, antisymmetric contrarotating disks, Stewartson-type flow occurs with radial outflow in boundary layers on both disks and inflow in the viscid nonrotating core. At intermediate values of Γ, two cells separated by a streamline that stagnates on the slower disk are formed: Batchelor-type flow and Stewartson-type flow occur radially outward and inward, respectively, of the stagnation streamline. Agreement between the computed and measured velocities is mainly very good, and no evidence was found of nonaxisymmetric or unsteady flow.


1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


Author(s):  
Himanshu Tyagi ◽  
Rui Liu ◽  
David S.-K. Ting ◽  
Clifton R. Johnston

The study of vortex shedding from a sphere assumes an important role because of its relevance to numerous aerodynamic and hydrodynamic applications. Parameters such as coefficient of drag and static pressure distribution are largely influenced by vortex shedding, and it is found by past studies that the freestream turbulence can interact and alter the vortex formation and shedding drastically. Most of these studies, however, were conducted in the low Reynolds number regime and the vortex shedding results had been described only qualitatively. To better understand the aerodynamics of a sphere in turbulent flow, an experimental study was initiated in a low speed wind tunnel to quantify the vortex shedding characteristics. The Reynolds number of the flow, based on the diameter of the sphere (d), was set at 3.3 × 104, 5 × 104 and 6.6 × 104 by varying the mean flow velocity. The sphere was placed at 20D (= 7.5d) downstream from a perforated plate, where D = 37.5 mm is the size of the holes in the perforated plate, uniquely designed for generating near-isotropic turbulence. Hot-wire measurements were taken at 10D (= 3.75d), 20D (= 7.5d) and 30D (= 11.25d) downstream of the sphere in absence and presence of the perforated plate. The vortex shedding frequency was deduced from the instantaneous flow velocity data.


2007 ◽  
Vol 54 ◽  
pp. 801-805 ◽  
Author(s):  
Souta NAKAJYO ◽  
Takaaki SHIGEMATSU ◽  
Gozo TSUJIMOTO ◽  
Kosei TAKEHARA

Sign in / Sign up

Export Citation Format

Share Document