Development of an immersive SLAM-based VR system for teleoperation of a mobile manipulator in an unknown environment

2021 ◽  
Vol 132 ◽  
pp. 103502
Author(s):  
Chen-Yu Kuo ◽  
Chun-Chi Huang ◽  
Chih-Hsuan Tsai ◽  
Yun-Shuo Shi ◽  
Shana Smith
Author(s):  
Vasileios Vasilopoulos ◽  
T. Turner Topping ◽  
William Vega-Brown ◽  
Nicholas Roy ◽  
Daniel E. Koditschek
Keyword(s):  

2021 ◽  
Vol 1 (1) ◽  
pp. 93-118
Author(s):  
Benjamin Breiling ◽  
Bernhard Dieber ◽  
Martin Pinzger ◽  
Stefan Rass

With the growing popularity of robots, the development of robot applications is subject to an ever increasing number of additional requirements from e.g., safety, legal and ethical sides. The certification of an application for compliance to such requirements is an essential step in the development of a robot program. However, at this point in time it must be ensured that the integrity of this program is preserved meaning that no intentional or unintentional modifications happen to the program until the robot executes it. Based on the abstraction of robot programs as workflows we present in this work a cryptography-powered distributed infrastructure for the preservation of robot workflows. A client composes a robot program and once it is accepted a separate entity provides a digital signature for the workflow and its parameters which can be verified by the robot before executing it. We demonstrate a real-world implementation of this infrastructure using a mobile manipulator and its software stack. We also provide an outlook on the integration of this work into our larger undertaking to provide a distributed ledger-based compliant robot application development environment.


Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.


Sign in / Sign up

Export Citation Format

Share Document