An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid

Author(s):  
Jirawat Narongthong ◽  
Amit Das ◽  
Hai Hong Le ◽  
Sven Wießner ◽  
Chakrit Sirisinha
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2901
Author(s):  
Peng Zhang ◽  
Yucheng Chen ◽  
Yuxia Li ◽  
Yao Zhang ◽  
Jian Zhang ◽  
...  

The authors wish to make the following corrections to this paper [...]


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Martinez ◽  
Gregorio Obieta ◽  
Ion Uribe ◽  
Tomasz Sikora ◽  
Estibalitz Ochoteco

The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure different parameters as electrical resistance, gauge factor (GF), hysteresis, and repeatability. The results clearly show the influence of size and electrical conductivity on the gauge factor, but it is also important to point out the necessity of controlling the hysteresis and repeatability of the response for precision-demanding applications.


2020 ◽  
Vol 12 (37) ◽  
pp. 42140-42152 ◽  
Author(s):  
Muchao Qu ◽  
Yijing Qin ◽  
Yue Sun ◽  
Huagen Xu ◽  
Dirk W. Schubert ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1836 ◽  
Author(s):  
Weiyi Zhang ◽  
Qiang Liu ◽  
Peng Chen

The demand for flexible and wearable electronic devices with excellent stretchability and sensitivity is increasing, especially for human motion detection. In this work, a simple, low-cost and convenient strategy has been employed to fabricate flexible strain sensor with a composite of carbon black and silver nanoparticles as sensing materials and thermoplastic polyurethane as matrix. The strain sensors thus prepared possesses high stretchability and good sensitivity (gauge factor of 21.12 at 100% tensile strain), excellent static (almost constant resistance variation under 50% strain for 600 s) and dynamic (100 cycles) stability. Compared with bare carbon black-based strain sensor, carbon black/silver nanoparticles composite-based strain sensor shows ~18 times improvement in sensitivity at 100% strain. In addition, we discuss the sensing mechanisms using the disconnection mechanism and tunneling effect which results in high sensitivity of the strain sensor. Due to its good strain-sensing performance, the developed strain sensor is promising in detecting various degrees of human motions such as finger bending, wrist rotation and elbow flexion.


Sign in / Sign up

Export Citation Format

Share Document