Strain-rate independent small-strain-sensor: Enhanced responsiveness of carbon black filled conductive rubber composites at slow deformation by using an ionic liquid

2020 ◽  
Vol 188 ◽  
pp. 107972 ◽  
Author(s):  
Jirawat Narongthong ◽  
Sven Wießner ◽  
Sakrit Hait ◽  
Chakrit Sirisinha ◽  
Klaus Werner Stöckelhuber
Author(s):  
Fan Zhang ◽  
Hailong Hu ◽  
Simin Hu ◽  
Jianling Yue

AbstractCarbon fibre (CF) embedded into elastomeric media has been attracting incredible interest as flexible strain sensors in the application of skin electronics owing to their high sensitivity in a very small strain gauge. To further improve the sensitivity of CF/PDMS composite strain sensor, the relatively low temperature prepared TiO2 nanowire via hydrothermal route was employed herein to functionalize CF. The results showed a significant increase in the sensitivity of the TiO2@CF/PDMS composite strain sensors which was reflected by the calculated gauge factor. As the prepared TiO2 nanowire vertically embraced the surroundings of the CF, the introduced TiO2 nanowire contributed to a highly porous structure which played a predominant role in improving the sensitivity of strain sensors. Moreover, the significant strain rate dependent behavior of TiO2@CF/PDMS strain sensor was revealed when performing monotonic tests at varied strain rate. Therefore, introducing TiO2 nanowire on CF offers a new technique for fabricating flexible strain sensors with improved sensitivity for the application of flexible electronics.


2013 ◽  
Vol 753-755 ◽  
pp. 2379-2382
Author(s):  
Shi Meng Xu ◽  
Run Bo Ma ◽  
Jian Hua Du ◽  
Jun Hong Liu ◽  
Qi Jin

Filled the N330 carbon black, silica T80 carbon black and Al powder and Fe2O3 magnetic nanoparticles, the rubber composites on multi-component electromagnetic fillers were prepared according to orthogonal experiment analysis, and the preliminary experiment conclusions of the filler prescription designs were given; Based on the experiment design, the mechanical properties and thermal conductivity of the rubber composite were tested, and the testing results were analyzed by using variance analysis. Thus, the paper shows that the effects of N330 on rubber mechanical properties are significant, and the effects of Al powder on the rubber thermal conductivity are significant. Moreover, it is highly emphasized in this paper that the orthogonal experiment design must be carefully explored before the tests are executed.


1997 ◽  
Vol 37 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Hervé Di Benedetto ◽  
Fumio Tatsuoka

Sign in / Sign up

Export Citation Format

Share Document