scholarly journals Mechanical properties of laminated bamboo under off-axis compression

Author(s):  
Dong Yang ◽  
Haitao Li ◽  
Zhenhua Xiong ◽  
Leonel Mimendi ◽  
Rodolfo Lorenzo ◽  
...  
2021 ◽  
Vol 304 ◽  
pp. 124427
Author(s):  
Han Zhang ◽  
Haitao Li ◽  
Yanjun Li ◽  
Zhenhua Xiong ◽  
Nini Zhang ◽  
...  

2019 ◽  
Vol 226 ◽  
pp. 32-43 ◽  
Author(s):  
Ming Xu ◽  
Zhaoyan Cui ◽  
Liuhui Tu ◽  
Qiuling Xia ◽  
Zhongfan Chen

2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Muhammad Hafiz Kamarudin ◽  
Mohd Suri Saringat ◽  
Nor Hisham Sulaiman

This study about laminated bamboo strip from gigantochloa levis type mixed with epoxy composite. Due to the existence of demand for products that are comfortable, healthy and environmentally friendly, this research has focused on the use of renewable sources that is bamboo. Bamboos are some of fastest growing plant in the world and also have a higher compressive strength than wood, brick or concrete and a tensile strength that rivals steel. Certain species of bamboo can grow 35 inchies within 24 hour period, at a rate of 3 cm/h. That means bamboos can growth of approximately 1 mm every 2 minutes. In this study, the bamboo strip reinforced with epoxy was processed through hand lay-out method. Bamboo strips are combined with epoxy for a total sample thickness of 3 mm. This study is performed using the impact test that is Charpy (ASTM D-6110) and Izod (ASTM D-256) to measure the mechanical properties of energy absorbtion, followed by hardness test (ASTM D-1037). The 0, 60 and 90 degree of laminated bamboo strip epoxy composite with two types of load 7 kg and 14 kg has been tested. It is found that the 0 degree specimen Charpy test give the best value is 4.79 Joule energy absorbtion for 14 kg load. While for the Izod test, the best composition is also 0 degree with 4.51 Joule energy absorbtion for 14 kg load. It is shown that when the degree of bamboo laminate configuration increases, the impact absorbtion decrease. The result also shown that, when the load is increase the impact also increases. It means that got relative significant between bamboo strip configuration and load. The impact properties relate to the loading weight. The hardness test also shown that the laminated bamboo strip for 14 kg load resulting 91 rating, that is more higher than 7 kg load that is 84. It is shown that more loads will result more hardness rating for the laminated bamboo strip.


2018 ◽  
Vol 38 ◽  
pp. 02001 ◽  
Author(s):  
Chenwei Wang ◽  
Huizhong Zhang ◽  
Chenjie Zhao ◽  
Chenge Zhang ◽  
Tongwei Cao ◽  
...  

This paper presents and discusses the experimental study on the mechanical properties of LBL column both under axial and eccentric compression. The results shows that the ultimate load for the eccentric compression specimens with the eccentricity values of 30 mm and 110 mm are 95.2 kN and 31.8 kN respectively. Eccentricity is one of the main influencing factors for the ultimate bearing capacity of the LBL columns. Because of the vulnerability of the mechanical connections or natural nodes to tensile stress and secondly, laminated bamboo is vulnerable to defects that has more detrimental influence on the tensile resistance of the material. The variation in strain for the laminated bamboo lumber column sections is linear throughout the loading process, following standard normal section bending theory which is similar as that for the beam.


2019 ◽  
Vol 130 ◽  
pp. 01040 ◽  
Author(s):  
Yuniar Ratna Pratiwi ◽  
Indah Widiastuti ◽  
Budi Harjanto

The aim of this article is to evaluate water absorption in bamboo fiber composites. Bamboo is hydrophilic, means that it easily absorbs water. In this study the bamboo fiber-based composites were developed using hand lay up method, with epoxy resin as the matrix constituent. Water absorption characteristics of specimens of bamboo composite and epoxy were determined from water immersion tests at several temperatures. Gravimetric analysis was performed to determine the moisure absorbed as a function of time at two different temperatures: 25 ºC and 50 C. The diffusivity of water in an epoxy bamboo composite was determined after reaching saturation point. During room temperature soaking, epoxy specimen showed the characteristic of Fickian behavior. Similar immersion tests on bamboo-epoxy composites followed nonfickian behavior. Changes in the mechanical properties of material due to water absorption were evaluated from tensile testing on materials with varied water content. It was found that the waterabsorption in all samples reduced the tensile properties. The degradation of tensile properties was greater with an increasing temperature of immersion. The results of this study emphasize the importance ofconsidering deterioration of mechanical properties in the bamboo epoxy composites during their application in water and possibly in humid environment.


2015 ◽  
Vol 1134 ◽  
pp. 143-146 ◽  
Author(s):  
Muhamad Iqram Ibrahim ◽  
Siti Rafedah Abd Karim ◽  
Tuan Anis Nadia Tuan Mohd Saipudin ◽  
Abdul Hamid Salleh

In this study, betong bamboo (Dendrocalamus asper) veneers were laminated with sesenduk wood (Endospermum diadenum) veneers to form Hybrid Laminated Bamboo-Wood Veneer (HLBWVB) using urea formaldehyde (UF) as glue. The HLBWVB was pressed at two levels of pressure viz. 70 kg/cm2 and 130 kg/cm2. The physical properties such as moisture content (%), density (kg/m3) and de-lamination (%), and also the mechanical properties such as bending (MPa), screw withdrawal (N) and shear (MPa) were determined in accordance to BS:EN 1993. From an independent t-test analysis p≤0.05; it was found that there are significant differences in the mean of all variable tested except for delamination test. It is shown that high pressure gives the best physical and mechanical properties compare to lower pressure.


2021 ◽  
Vol 300 ◽  
pp. 123937
Author(s):  
Bhavna Sharma ◽  
Damian Eley ◽  
Oscar Emanuel ◽  
Charley Brentnall

Sign in / Sign up

Export Citation Format

Share Document