Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration

2017 ◽  
Vol 113 ◽  
pp. 285-290 ◽  
Author(s):  
Zifan Che ◽  
Qingxiao Wang ◽  
Luhua Wang ◽  
Jianwei Li ◽  
Hailong Zhang ◽  
...  
2014 ◽  
Vol 54 (11) ◽  
pp. 2463-2470 ◽  
Author(s):  
Kiyoshi Mizuuchi ◽  
Kanryu Inoue ◽  
Yasuyuki Agari ◽  
Masami Sugioka ◽  
Motohiro Tanaka ◽  
...  

2016 ◽  
Vol 23 (2) ◽  
pp. 179-185
Author(s):  
Jie Hu ◽  
Gaohui Wu ◽  
Qiang Zhang ◽  
Huasong Gou

AbstractImitating the structure of steel-reinforced concrete, a composite coupling good damping capacity and mechanical property was fabricated by pressure infiltration progress. The aluminum (Al) matrix composite was hybrid reinforced by 20% volume fraction of SiC particle (SiCp) and 20% volume fraction of TiNi fiber (TiNif). The damping capacity of the composite in the temperature range from 30°C to 290°C was studied using a dynamic mechanical analyzer (DMA). Due to the B19′→B2 reverse martensitic transformation in TiNif, a damping peak showed up in the heating process. Furthermore, both the hysteretic effect of the martensite/variants interfaces in TiNif and the weak bonding interface between SiCp and TiNif were attributed to the high damping capacity of the composite. After tension deformation, a compressive stress was formed in the composite in the heating process. With the help of compressive stress, the value of the damping peak was much higher than before, since the movement of dislocation in the Al matrix was easier.


2021 ◽  
pp. 160127
Author(s):  
Zhen Wang ◽  
Mixue Tan ◽  
Jiang Wang ◽  
Jing Zeng ◽  
Fengjun Zhao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1767
Author(s):  
Yuhong Jiao ◽  
Jianfeng Zhu ◽  
Xuelin Li ◽  
Chunjie Shi ◽  
Bo Lu ◽  
...  

Al matrix composite, reinforced with the in situ synthesized 3C–SiC, MgAl2O4, and MgO grains, was produced via the casting process using phenolic resin pyrolysis products in flash mode. The contents and microstructure of the composites’ fracture characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties were tested by universal testing machine. Owing to the strong propulsion formed in turbulent flow in the pyrolysis process, nano-ceramic grains were formed in the resin pyrolysis process and simultaneously were homogeneously scattered in the alloy matrix. Thermodynamic calculation supported that the gas products, as carbon and oxygen sources, had a different chemical activity on in situ growth. In addition, ceramic (3C–SiC, MgAl2O4, and MgO) grains have discrepant contents. Resin pyrolysis in the molten alloy decreased oxide slag but increased pores in the alloy matrix. Tensile strength (142.6 ± 3.5 MPa) had no change due to the cooperative action of increased pores and fine grains; the bending and compression strength was increasing under increased contents of ceramic grains; the maximum bending strength was 378.2 MPa in 1.5% resin-added samples; and the maximum compression strength was 299.4 MPa. Lath-shaped Si was the primary effect factor of mechanical properties. The failure mechanism was controlled by transcrystalline rupture mechanism. We explain that the effects of the ceramic grains formed in the hot process at the condition of the resin exist in mold or other accessory materials. Meanwhile, a novel ceramic-reinforced Al matrix was provided. The organic gas was an excellent source of carbon, nitrogen, and oxygen to in situ ceramic grains in Al alloy.


2021 ◽  
Vol 405 ◽  
pp. 126676
Author(s):  
Xinliang Xie ◽  
Zhanqiu Tan ◽  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Hongjian Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document