thermoplastic polyurethane elastomer
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 3)

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 161
Author(s):  
Miranda Fateri ◽  
João Falcão Carneiro ◽  
Achim Frick ◽  
João Bravo Pinto ◽  
Fernando Gomes de Almeida

In this paper, endurance of peristaltic linear pneumatic actuators was studied using different hose geometries. Towards this goal, different hose geometries were additively manufactured using Fused Layer Manufacturing techniques of Thermoplastic Polyurethane Elastomer. Material properties of the elastomer were studied using Differential Scanning Calorimetry and the tensile test. The relations between the sample’s print temperature and build direction on the actuator endurance were investigated. Lastly, the relation between the geometry design of the PLPA actuator and its endurance is also discussed. Based on this methodology, authors present results showing that the use of a customized shaped hose with geometrical reinforcement at sides leads to a considerable rise in the hose endurance, when compared with the conventional circular design.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngho Eom ◽  
Seon-Mi Kim ◽  
Minkyung Lee ◽  
Hyeonyeol Jeon ◽  
Jaeduk Park ◽  
...  

AbstractSelf-repairable materials strive to emulate curable and resilient biological tissue; however, their performance is currently insufficient for commercialization purposes because mending and toughening are mutually exclusive. Herein, we report a carbonate-type thermoplastic polyurethane elastomer that self-heals at 35 °C and exhibits a tensile strength of 43 MPa; this elastomer is as strong as the soles used in footwear. Distinctively, it has abundant carbonyl groups in soft-segments and is fully amorphous with negligible phase separation due to poor hard-segment stacking. It operates in dual mechano-responsive mode through a reversible disorder-to-order transition of its hydrogen-bonding array; it heals when static and toughens when dynamic. In static mode, non-crystalline hard segments promote the dynamic exchange of disordered carbonyl hydrogen-bonds for self-healing. The amorphous phase forms stiff crystals when stretched through a transition that orders inter-chain hydrogen bonding. The phase and strain fully return to the pre-stressed state after release to repeat the healing process.


Sign in / Sign up

Export Citation Format

Share Document