Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities

2021 ◽  
Vol 202 ◽  
pp. 108558
Author(s):  
Xianyuan Liu ◽  
Zilong Wang ◽  
Jinsong Sun ◽  
Zehua Zhao ◽  
Shuyi Zhan ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35809-35814 ◽  
Author(s):  
Junwei Gu ◽  
Chaobo Liang ◽  
Jing Dang ◽  
Wencai Dong ◽  
Qiuyu Zhang

NH2–POSS functionalized nanosized boron nitride fillers were performed to fabricate thermally conductive bismaleimide/diallylbisphenol A (BMI/DABA) nanocomposites combining excellent dielectric properties and outstanding thermal stabilities.


2019 ◽  
Vol 31 (3) ◽  
pp. 350-358 ◽  
Author(s):  
XinYu Leng ◽  
Chao Xiao ◽  
Lu Chen ◽  
Zheng Su ◽  
Kang Zheng ◽  
...  

Thermally conductive epoxy composites of 3-D boron nitride (BN) networks were synthesized via a facile template method, wherein an epoxy was infiltrated into the network. The 3-D BN network skeletons, which use polystyrene (PS) microspheres as a framework support, were prepared by hot compression and ablation techniques. Field emission scanning electron microscope indicated that the content of BN filler and its dispersion greatly influences the integrity and density of the resultant network. With a BN loading of 40 vol%, the composites showed a maximum thermal conductivity of 1.98 W mK−1, which is 1000% times higher than the pristine epoxy material. In addition, the thermal stabilities, mechanical properties, and dielectric properties of the fabricated BN/epoxy composites were also largely improved. This facile method is an effective approach to designing and fabricating composites with high thermal conductivities.


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


2017 ◽  
Vol 1 (10) ◽  
pp. 2145-2154 ◽  
Author(s):  
Bo Zhao ◽  
Xian-Zhu Fu ◽  
Rong Sun ◽  
Ching-Ping Wong

The highly thermally conductive graphene-based electrodes for supercapacitors exhibit great heat dissipation ability as well as excellent cycling performance and rate capacity.


2020 ◽  
pp. 089270572096564
Author(s):  
Xiao Wang ◽  
Hui Lu ◽  
Jun Chen

In this work, ultra-high molecular weight polyethylene (UHMWPE)/natural flake graphite (NG) polymer composites with the extraordinary high thermal conductivity were prepared by a facile mixed-heating powder method. Morphology observation and X-ray diffraction (XRD) tests revealed that the NG flakes could be more tightly coated on the surface of UHMWPE granules by mixed-heating process and align horizontally (perpendicular to the hot compression direction of composites). Laser flash thermal analyzer (LFA) demonstrated that the thermal conductivity (TC) of composites with 21.6 vol% of NG reached 19.87 W/(m·K) and 10.67 W/(m·K) in the in-plane and through-plane direction, respectively. Application experiment further demonstrated that UHMWPE/NG composites had strong capability to dissipate the heat as heat spreader. The obtained results provided a valuable basis for fabricating high thermal conductive composites which can act as advanced thermal management materials.


Sign in / Sign up

Export Citation Format

Share Document