An efficient approach for constructing 3-D boron nitride networks with epoxy composites to form materials with enhanced thermal, dielectric, and mechanical properties

2019 ◽  
Vol 31 (3) ◽  
pp. 350-358 ◽  
Author(s):  
XinYu Leng ◽  
Chao Xiao ◽  
Lu Chen ◽  
Zheng Su ◽  
Kang Zheng ◽  
...  

Thermally conductive epoxy composites of 3-D boron nitride (BN) networks were synthesized via a facile template method, wherein an epoxy was infiltrated into the network. The 3-D BN network skeletons, which use polystyrene (PS) microspheres as a framework support, were prepared by hot compression and ablation techniques. Field emission scanning electron microscope indicated that the content of BN filler and its dispersion greatly influences the integrity and density of the resultant network. With a BN loading of 40 vol%, the composites showed a maximum thermal conductivity of 1.98 W mK−1, which is 1000% times higher than the pristine epoxy material. In addition, the thermal stabilities, mechanical properties, and dielectric properties of the fabricated BN/epoxy composites were also largely improved. This facile method is an effective approach to designing and fabricating composites with high thermal conductivities.

2019 ◽  
Vol 33 (8) ◽  
pp. 1017-1029 ◽  
Author(s):  
Honglin Luo ◽  
Jikui Liu ◽  
Zhiwei Yang ◽  
Quanchao Zhang ◽  
Haiyong Ao ◽  
...  

Electrically insulating yet thermally conductive polymer-based composites are highly sought after in aerospace field. In this work, for the first time, electrically insulating but thermally conductive polyimide (PI) composites are fabricated by simultaneously incorporating micro- and nano-sized aluminum nitride (AlN) particles via a simple, economic, and scalable method of ball milling and subsequent hot-pressing process. The thermal conductivity, dielectric, and mechanical properties of the PI composites depend on the ratio of micro-sized AlN (m-AlN) to nano-sized AlN (n-AlN) and the total content of AlN in the PI composites. The thermal conductivity of the PI composites with 40 wt% m-AlN and 20 wt% n-AlN is 1.5 ± 0.05 W·m−1·K−1, which is 10 times higher than that of bare PI. The PI composites hold a great potential in aerospace industries.


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


2015 ◽  
Vol 719-720 ◽  
pp. 141-144
Author(s):  
Chen Chi M. Ma ◽  
Sheng Tsung Hsiao ◽  
Wei Hao Liao ◽  
Shin Ming Li ◽  
Yu Sheng Wang ◽  
...  

This study proposed a method to improve the mechanical properties and thermal conductivity of epoxy composites by incorporating multi-walled carbon nanotubes (MWCNTs) and multi-graphene platelets (MGPs) hybrid materials. The MWCNT can bridge adjacent MGPs and inhibit their aggregation effectively, leading to an increased contact surface area between MGP/MWCNT hybrid materials and epoxy matrix. From observing the fractured surface of composite by scanning electron microscope, MWCNT/MGP hybrid materials exhibited better compatibility than individual MWCNT and MGP did.The tensile strength of GD400-MWCNT/MGP/epoxy composites was 35.4% higher than that of epoxy, compared to only a 0.9% increase in tensile strength for MGP/epoxy composites. Thermal conductivity enhanced by 146.9% through incorporating MWCNT/MGP hybrid materials and 23.9% for MGP fillers, compared to non-derivatised epoxy.


Sign in / Sign up

Export Citation Format

Share Document