Ultra-low CNTs filled high-performance fast self-healing triboelectric nanogenerators for wearable electronics

Author(s):  
Panlei Liu ◽  
Na Sun ◽  
Yuanyuan Mi ◽  
Xiaohang Luo ◽  
Xiaoxiao Dong ◽  
...  
2021 ◽  
Vol 7 (7) ◽  
pp. eabe0586
Author(s):  
Wei Ren ◽  
Yan Sun ◽  
Dongliang Zhao ◽  
Ablimit Aili ◽  
Shun Zhang ◽  
...  

Thermoelectric generators (TEGs) are an excellent candidate for powering wearable electronics and the “Internet of Things,” due to their capability of directly converting heat to electrical energy. Here, we report a high-performance wearable TEG with superior stretchability, self-healability, recyclability, and Lego-like reconfigurability, by combining modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-metal electrical wiring in a mechanical architecture design of “soft motherboard-rigid plugin modules.” A record-high open-circuit voltage among flexible TEGs is achieved, reaching 1 V/cm2 at a temperature difference of 95 K. Furthermore, this TEG is integrated with a wavelength-selective metamaterial film on the cold side, leading to greatly improved device performance under solar irradiation, which is critically important for wearable energy harvesting during outdoor activities. The optimal properties and design concepts of TEGs reported here can pave the way for delivering the next-generation high-performance, adaptable, customizable, durable, economical, and eco-friendly energy-harvesting devices with wide applications.


2019 ◽  
Vol 7 (23) ◽  
pp. 13948-13955 ◽  
Author(s):  
Qingbao Guan ◽  
Guanghui Lin ◽  
Yuzhu Gong ◽  
Jingfeng Wang ◽  
Weiyi Tan ◽  
...  

A soft hydrogel based self-healing triboelectric nanogenerator (HS-TENG) is highly deformable, and both mechanically and electrically self-healable upon exposure to water spraying and near-infrared (NIR) light.


2021 ◽  
Vol 2 ◽  
pp. 485-496
Author(s):  
Kasem Khalil ◽  
Omar Eldash ◽  
Ashok Kumar ◽  
Magdy Bayoumi

Author(s):  
Guillem Romero-Sabat ◽  
Elena Gago-Benedí ◽  
Joan Josep Roa Rovira ◽  
David González-Gálvez ◽  
Antonio Mateo ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 201
Author(s):  
Stefano Paolillo ◽  
Ranjita K. Bose ◽  
Marianella Hernández Santana ◽  
Antonio M. Grande

This article reviews some of the intrinsic self-healing epoxy materials that have been investigated throughout the course of the last twenty years. Emphasis is placed on those formulations suitable for the design of high-performance composites to be employed in the aerospace field. A brief introduction is given on the advantages of intrinsic self-healing polymers over extrinsic counterparts and of epoxies over other thermosetting systems. After a general description of the testing procedures adopted for the evaluation of the healing efficiency and the required features for a smooth implementation of such materials in the industry, different self-healing mechanisms, arising from either physical or chemical interactions, are detailed. The presented formulations are critically reviewed, comparing major strengths and weaknesses of their healing mechanisms, underlining the inherent structural polymer properties that may affect the healing phenomena. As many self-healing chemistries already provide the fundamental aspects for recyclability and reprocessability of thermosets, which have been historically thought as a critical issue, perspective trends of a circular economy for self-healing polymers are discussed along with their possible advances and challenges. This may open up the opportunity for a totally reconfigured landscape in composite manufacturing, with the net benefits of overall cost reduction and less waste. Some general drawbacks are also laid out along with some potential countermeasures to overcome or limit their impact. Finally, present and future applications in the aviation and space fields are portrayed.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


Sign in / Sign up

Export Citation Format

Share Document