Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics

2019 ◽  
Vol 7 (23) ◽  
pp. 13948-13955 ◽  
Author(s):  
Qingbao Guan ◽  
Guanghui Lin ◽  
Yuzhu Gong ◽  
Jingfeng Wang ◽  
Weiyi Tan ◽  
...  

A soft hydrogel based self-healing triboelectric nanogenerator (HS-TENG) is highly deformable, and both mechanically and electrically self-healable upon exposure to water spraying and near-infrared (NIR) light.

2020 ◽  
Vol 15 ◽  
pp. 155892502096735
Author(s):  
Li Niu ◽  
Xuhong Miao ◽  
Gaoming Jiang ◽  
Ailan Wan ◽  
Yutian Li ◽  
...  

Advanced triboelectric nanogenerator techniques provide a massive opportunity for the development of new generation wearable electronics, which toward multi-function and self-powering. Textiles have been refreshed with the requirement of flexible electronics in recent decades. In particular, knitted-textiles have exhibited enormous and prominent potential possibilities for smart wearable devices, which are based on the merits of high stretchability, excellent elasticity, comfortability as well as compatibility. Combined knitted textiles with nanogenerator techniques will promote the knitted textile triboelectric nanogenerators (KNGs) emerging, endowing conventional textiles with biomechanical energy harvesting and sensing energy supplied abilities. However, the design of KNGs and the construction of KNGs are based on features of human motions symbolizing considerable challenges in both high efficiency and excellent comfort. Currently, this review is concerned with KNGs construction account of triboelectric effects referring to knitted-textile classifications, structural features, human motion energy traits, working mechanisms, and practical applications. Moreover, the remaining challenges of industrial production and the future prospects of knitted-textile triboelectric nanogenerators of harvesting biomechanical energy are presented.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 51055-51061 ◽  
Author(s):  
Weidong Ji ◽  
Najun Li ◽  
Dongyun Chen ◽  
Yang Jiao ◽  
Qingfeng Xu ◽  
...  

A NIR light and pH dual responsive nanocarrier was fabricated for anti-cancer drug delivery as well as MRI and fluorescence cell imaging.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijuan Song ◽  
Zheng Zhang ◽  
Xiaochen Xun ◽  
Liangxu Xu ◽  
Fangfang Gao ◽  
...  

Electronic skin (e-skin) with skin-like flexibility and tactile sensation will promote the great advancements in the fields of wearable equipment. Thus, the multifunction and high robustness are two important requirements for sensing capability of the e-skin. Here, a fully organic self-powered e-skin (FOSE-skin) based on the triboelectric nanogenerator (TENG) is developed. FOSE-skin based on TENG can be fully self-healed within 10 hours after being sheared by employing the self-healing polymer as a triboelectric layer and ionic liquid with the temperature sensitivity as an electrode. FOSE-skin based on TENG has the multifunctional and highly robust sensing capability and can sense the pressure and temperature simultaneously. The sensing capability of the FOSE-skin based on TENG can be highly robust with no changes after self-healing. FOSE-skin based on TENG can be employed to detect the arm swing, the temperature change of flowing water, and the motion trajectory. This work provides a new idea for solving the issues of monofunctional and low robust sensing capability for FOSE-skin based on TENG, which can further promote the application of wearable electronics in soft robotics and bionic prosthetics.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1120
Author(s):  
Dae Sol Kong ◽  
Jae Yeon Han ◽  
Young Joon Ko ◽  
Sang Hyeok Park ◽  
Minbaek Lee ◽  
...  

While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.


2021 ◽  
Vol 17 (6) ◽  
pp. 1131-1147
Author(s):  
Sijin Xiang ◽  
Zhongxiong Fan ◽  
Duo Sun ◽  
Tianbao Zhu ◽  
Jiang Ming ◽  
...  

The overall eradication of biofilm-mode growing bacteria holds significant key to the answer of a series of infection-related health problems. However, the extracellular matrix of bacteria biofilms disables the traditional antimicrobials and, more unfortunately, hampers the development of the anti-infectious alternatives. Therefore, highly effective antimicrobial agents are an urgent need for biofilm-infection control. Herein, a PEGylated palladium nanozyme (Pd-PEG) with peroxidase (POD)-like activity for highly efficient biofilm infection control is reported. Pd-PEG also shows the intrinsic photothermal effect as well as near-infrared (NIR) light-enhanced POD-like activity in the acidic environment, thereby massively destroying the biofilm matrix and killing the adhering bacteria. Importantly, the antimicrobial mechanism of the synergistic treatment based on Pd-PEG+H2O2+NIR combination was disclosed. In vitro and in vivo results illustrated the designed Pd-PEG+H2O2 +NIR treatment reagent possessed outstanding antibacterial and biofilms elimination effects with negligible biotoxicity. This work hopefully facilitates the development of metal-based nanozymes in biofilm related infectious diseases.


2018 ◽  
Vol 6 (39) ◽  
pp. 19143-19150 ◽  
Author(s):  
Chuan Ning ◽  
Lan Tian ◽  
Xinya Zhao ◽  
Shengxin Xiang ◽  
Yingjie Tang ◽  
...  

A washable textile-structured single-electrode triboelectric nanogenerators (TS-TENG) was successful developed. A stained TS-TENG can be easily and quickly cleaned by washing in water. When sewed on clothes, it can effectively harvest biomechanical energy from human motions.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


Sign in / Sign up

Export Citation Format

Share Document