Experimental and numerical investigations about textile-reinforced concrete and hybrid solutions for repairing and/or strengthening reinforced concrete beams

2013 ◽  
Vol 99 ◽  
pp. 152-162 ◽  
Author(s):  
Amir Si Larbi ◽  
Amen Agbossou ◽  
Patrice Hamelin
2019 ◽  
Vol 14 ◽  
pp. 155892501984590 ◽  
Author(s):  
Shiping Yin ◽  
Yulin Yu ◽  
Mingwang Na

To study the reinforcement effect of textile-reinforced concrete (TRC) on concrete structures in a marine environment, a four-point bending loading method was used for graded loading to analyze the influence of the dry–wet cycle number, the reinforcement method, and chopped fiber addition on the flexural properties of load-holding reinforced concrete beams reinforced with textile-reinforced concrete. The results show that with the increase of dry–wet cycle numbers, the crack width and deflection of beams develop faster and the bearing capacity decreases. The performance of the prefabricated textile-reinforced concrete plate is close to that of a cast-in-place textile-reinforced concrete in limiting crack, bearing capacity, and deflection deformation. The addition of chopped fibers in fine-grained concrete can improve the reinforcement effect of textile-reinforced concrete. Based on the experimental results and referring to the relevant design codes and literature, the calculation formula of the bearing capacity of TRC-strengthened beam with a secondary load is established, and the calculated values are in good agreement with the actual values.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 4339-4349
Author(s):  
Cao Thanh Ngoc Tran ◽  
Xuan Huy Nguyen ◽  
Anh Tuan Le ◽  
Huy Cuong Nguyen ◽  
Dang Dung Le

2020 ◽  
Vol 857 ◽  
pp. 120-129
Author(s):  
Abdul Muttalib I. Said ◽  
Qais H. Al-Shemmari

The numerical investigations were carried out to study the behavior of reinforced concrete beams strengthened by CFRP under different loading conditions (pure bending and combined bending and torsion). The numerical work included analysis of eight experimentally tested beams of rectangular cross-section dimensions of (160×240) mm and (2600) mm length keeping the area of the ordinary reinforcement constant for all beams. The following parameters were taken into consideration, twisting to bending moment ratio (T/M) and CFRP strengthening arrangement. The analyzed beams are divided into four groups. Each group consists of two beams; the first beam is without CFRP strengthening, the other beam is strengthened with CFRP. Each beam is loaded to a different loading conditions (pure bending, T/M=0.5, T/M=1.0, T/M=2.0). The CFRP sheets were attached externally to the beam. Analysis results were analyzed based on influence of CFRP on ultimate load and vertical mid-span deflection. According to the numerical study, it was found that all strengthening arrangements of CFRP sheets exhibited a significant increase in ultimate strength. The three-dimensional (3D) finite element model (FEM) utilized in present work is capable to simulate the behavior of externally strengthened reinforced concrete beams by CFRP. Full bond connections (no slip) are assumed between the CFRP sheets and surface of concrete. The comparison between the numerical and the experimental results declared the validity of the numerical analysis where the range of the (Pexp./PANSYS) ratio in ultimate load was from 0.847 to 1.157. The general behavior of the (FEM) shows good agreement with the test results from the experimentally tested beams.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1178
Author(s):  
Fahed Alrshoudi

Textile-reinforced concrete (TRC) as a novel high-performance composite material can be used as a strengthening material and component bearing load alone. The flexural performance of TRC beams strengthened with textile reinforcement such as carbon tows was experimentally examined and associated with those of steel-reinforced concrete (SRC) beams. Through four-point bending tests, this research explores the effects of textile layers and dosages of short textile fibre on the flexural strength of concrete beams. A total of 64 prism samples of size 100 mm × 100 mm × 500 mm were made, flexure-strengthened, and tested to evaluate various characteristics and the efficiency of TRC versus SRC beams. TRC beams performed exceptionally well as supporting material in enhancing concrete’s flexural capacity; in addition, TRC’s average ultimate load effectiveness was up to 56% than that of SRC specimens. Furthermore, the maximum deflection was about 37% lesser than SRC beams. The results showed that by increasing the number of layers, the TRC’s effectiveness was significantly increased, and the failure mode became more ductile.


Sign in / Sign up

Export Citation Format

Share Document