Low velocity impact response of thick FGM beams with general boundary conditions in thermal field

2013 ◽  
Vol 104 ◽  
pp. 293-303 ◽  
Author(s):  
Y. Kiani ◽  
M. Sadighi ◽  
S. Jedari Salami ◽  
M.R. Eslami
2020 ◽  
Vol 17 (1) ◽  
pp. 1-17
Author(s):  
Ali Sadik Gafer Qanber ◽  
Raed Salman Saeed Alhusseini ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
Mehdi Ranjbar

PurposeThe main objective of this article is to develop a theoretical formulation for predicting the response of CNTs reinforced beam under multiple impactors with general boundary conditions, using first-order shear deformation beam theory.Design/methodology/approachThe rule of mixtures is implemented to derive the material properties of the beam. The nonlinear Hertz contact law is applied for simulation between impactors and the surface of the beam. A combination of approaches includes energy method, Ritz method and generalized Lagrange equations are used to extract the matrix form of equations of motion. The time-domain solution is obtained using implementing the well-known Runge Kutta 4th order method.FindingsAfter examining the accuracy of the present method, the effects of the number of impactors include one impactor, and three impactors in various CNTs volume fraction are studied for CNTs reinforced beam with clamped-clamped, clamped-free and simply supported boundary conditions under the low-velocity impact. The most important finding of this article is that contact force and beam indentation at the middle of the beam in the case of one impactor are greater than those reported in the case of three impactors.Originality/valueThis article fulfills an identified need to study how CNTs reinforced beam behaviour with general boundary conditions under multiple low-velocity impacts can be enabled.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


2021 ◽  
Vol 150 ◽  
pp. 103813
Author(s):  
Zhiqiang Fan ◽  
Tao Suo ◽  
Taoyi Nie ◽  
Peng Xu ◽  
Yingbin Liu ◽  
...  

2021 ◽  
Vol 1123 (1) ◽  
pp. 012040
Author(s):  
V. Sairam ◽  
S.Kishor Kanna ◽  
P.S.Samuel Ratna Kumar

2016 ◽  
Vol 725 ◽  
pp. 127-131 ◽  
Author(s):  
Kumar V. Akshaj ◽  
P. Surya ◽  
M.K. Pandit

Dent resistance of structures is one of the important design parameters to consider in automotive, aerospace, packaging and transportation of fragile goods, civil engineering and marine industries. It is important to study the dynamic impact response of various combinations of skin and core materials which can provide desired fracture toughness and highest strength to weight ratio for such applications. This paper discusses the low velocity impact response of sandwich structures having unique combination of mild steel as skin material bonded to thermoplastics/PU foam as core material. HDPE, LDPE and polypropylene were the choice of thermoplastics and an optimum combination of materials for the sandwich structure was evaluated using drop-weight experimental set up. It is observed that LDPE is the best choice of core material for the sandwich structures considered.


Sign in / Sign up

Export Citation Format

Share Document