Damage imaging of composite structures using multipath scattering Lamb waves

2019 ◽  
Vol 216 ◽  
pp. 331-339 ◽  
Author(s):  
Liang Zeng ◽  
Liping Huang ◽  
Jing Lin
2012 ◽  
Vol 518 ◽  
pp. 87-94 ◽  
Author(s):  
Lukasz Ambrozinski ◽  
Tadeusz Stepinski ◽  
Tadeusz Uhl ◽  
Janusz Ochonski ◽  
Andrzej Klepka

Guided waves (GW) based methods are a promising tool for structural health monitoring (SHM) of plate-like metallic and composite structures in which high safety standards are required. In this paper we present research with the aim to design and manufacture a prototype of Lamb waves (LW) SHM system. Two approaches can be applied for SHM of plate-like structures. One of them can be based on a sparse array and damage imaging involving incoherent summation of signals envelope. The second approach involves phased arrays with transducers spaced at a distance lower than half wavelength of the excited Lamb-mode. The influence of an arrays parameters on beamforming of Lamb waves is discussed in the case of linear array. It appears that an unequivocal localization of damage on a plate requires a 2D arrays topology; therefore a star-shaped active array was designed and manufactured for the developed SHM system. Two signal processing approaches were applied for that array, the standard one, based on the delay and sum (DAS) synthetic aperture focusing scheme, and the second one, using a self-focusing technique to obtain the separate images for each scatterer existing in the plate.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2745 ◽  
Author(s):  
Ruihua Li ◽  
Hao Li ◽  
Bo Hu

Large generators are the principal pieces of equipment in power systems, and their operation reliability critically depends on the stator insulation. Damages in stator insulation will gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element Modeling (FEM) simulation and experimental work were carried out to identify four typical stator insulation damages for validation, including inner void, inner delamination, puncture, and crack. Results show that the proposed method can precisely identify the location of stator insulation damage, and the reconstruction image can be used to identify the size of stator insulation damage.


2013 ◽  
Vol 718-720 ◽  
pp. 2062-2067 ◽  
Author(s):  
Shang Chen Fu ◽  
Zhen Jian Lv ◽  
Ding Ma ◽  
Li Hua Shi

The use of Lamb waves for structural health monitoring (SHM) has complicated by its multi-mode character and dispersion effect, which impacts the damage positioning and high-resolution imaging. The group velocity dispersion curves of Lamb waves can be employed to warp the frequency axis, and then to establish warped frequency transform (WFT) to process Lamb waves. In this paper, received signals are directly compensated with warped frequency transform to suppress dispersion, and a new imaging method is proposed based on warped frequency transform. The propagation of Lamb waves in damaged aluminum plate is simulated by finite element software ABAQUS, results show that warped frequency transform can effectively compensate dispersive wave-packets, and high-resolution damage imaging can be obtained by the proposed method.


2019 ◽  
Vol 298 ◽  
pp. 161-166
Author(s):  
Ouadia Mouhat ◽  
Abdelmajid Bybi ◽  
Ahmed El Bouhmidi ◽  
Hasnae Boubel ◽  
Omaima Elmrabet ◽  
...  

The present work proposes a vibration study with different surface and layers orientations at 0°, 15°, 30°, 45°, 60°, 75° and 90°using the Abaqus finite element code, the frequencies Stratified laminate composite panels were studied and the comparison between damaged structures and perfect structures we used stiffened panels based on T-shaped reinforced fibers. Lamb waves (LW) were widely proposed for the long-range inspection of Structural Structural Health Monitoring (SHM) oriented composite structures, the obtained results show the angle effects on the natural frequency increase at a peak then decrease in the form of a sinusoidal half-curve and the numerical results found in this work can be compared to those of other authors in the same area of ​​research, A piezoelectric actuator is used to design acoustic waves and a sensor is used for signal acquisition.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3659 ◽  
Author(s):  
Seno ◽  
Aliabadi

A parametric investigation of the effect of impactor stiffness as well as environmental and operational conditions on impact contact behaviour and the subsequently generated lamb waves in composite structures is presented. It is shown that differing impactor stiffness generates the most significant changes in contact area and lamb wave characteristics (waveform, frequency, and amplitude). A novel impact localisation method was developed based on the above observations that allows for variations due to differences in impactor stiffness based on modifications of the reference database method and the Akaike Information Criterion (AIC) time of arrival (ToA) picker. The proposed method was compared against a benchmark method based on artificial neural networks (ANNS) and the normalised smoothed envelope threshold (NSET) ToA extraction method. The results indicate that the proposed method had comparable accuracy to the benchmark method for hard impacts under various environmental and operational conditions when trained only using a single hard impact case. However, when tested with soft impacts, the benchmark method had very low accuracy, whilst the proposed method was able to maintain its accuracy at an acceptable level. Thus, the proposed method is capable of detecting the location of impacts of varying stiffness under various environmental and operational conditions using data from only a single impact case, which brings it closer to the application of data driven impact detection systems in real life structures.


2019 ◽  
Vol 28 (6) ◽  
pp. 065010 ◽  
Author(s):  
Jiaze He ◽  
Daniel C Rocha ◽  
Patrick E Leser ◽  
Paul Sava ◽  
William P Leser

2006 ◽  
Vol 295 (3-5) ◽  
pp. 753-780 ◽  
Author(s):  
Zhongqing Su ◽  
Lin Ye ◽  
Ye Lu

Sign in / Sign up

Export Citation Format

Share Document