scholarly journals Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution

2021 ◽  
Vol 256 ◽  
pp. 112975
Author(s):  
Pedram Khaneh Masjedi ◽  
Paul M. Weaver



2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Junli Lyu ◽  
Qichao Chen ◽  
Huizhong Xue ◽  
Yongyuan Cai ◽  
Jingjing Lyu ◽  
...  

To investigate the fire resistance of composite beams with restrained superposed slabs, three specimens were tested under uniformly distributed loads in a furnace. The effects of the thickness of the postcast top layer in superposed slabs and the spacing of shear studs on the structural behaviours of composite beams under fire were further examined. During the tests, the temperature distributions of the superposed slabs and steel beams as well as the displacements at their key positions were recorded and analysed. It was found that the temperature of the concrete superposed slabs decreased long their heights from the bottom. The most drastic change of the temperature along the slab cross section was found in the region with a distance of 40 mm to the slab bottom. The concrete superposed slabs could impose restraints to the steel beams due to their incompatible deformations. Cracks were developed on the top surfaces of the specimens and the superposing interfaces between the precast slabs and postcast top layers were not broken. Through the comparisons of different specimens, the spacing of shear studs could have a significant effect on the fire resistance of composite beams, especially for their deformation recovery capacities. In contrast, the effect of the thickness of the postcast top layers was negligible. ABAQUS was employed to simulate the temperature fields and deformation behaviours of composite beam specimens based on a sequenced thermomechanical coupling analysis. The numerical results agreed well with the experiment data, which validated the developed numerical model.



2019 ◽  
Vol 6 (1) ◽  
pp. 105-116 ◽  
Author(s):  
István Ecsedi ◽  
Ákos József Lengyel

AbstractAn analytical solution is presented for the determination of deformation of curved composite beams. Each cross-section is assumed to be symmetrical and the applied loads are acted in the plane of symmetry of curved beam. In-plane deformations are considered of composite curved beams. Assumed form of the displacement field assures the fulfillment of the classical Bernoulli-Euler beam theory. The curvature of beam is constant and the internal forces in a cross-section is replaced by an equivalent forcecouple system at the origin of the cylindrical coordinate system used. The internal forces are expressed in terms of two kinematical variables, which are the radial displacement and the rotation of the cross-sections. The determination of the analytical solutions of the considered static problems are based on the fundamental solutions. Linear combination of the fundamental solutions which are filling to the given loading and boundary conditions, gives the total solution. Closed form formulae are derived for the radial displacement, cross-sectional rotation, nomral and shear forces and bending moments. The circumferential and radial normal stresses and shear stresses are obtained by the integration of equilibrium equations. Examples illustrate the developed method.





2020 ◽  
Vol 323 ◽  
pp. 01013
Author(s):  
Marek Lechman

The paper deals with the resistance of steel and concrete composite beams, named BH beams, subjected to bending. They are structurally connected with prefabricated or cast in situ slabs, forming floor slab system. The beams under consideration consist of the reinforced concrete (RC) rectangular core placed inside a reversed TT welded profile. The stress-strain relationship for concrete in compression of the RC core is assumed for nonlinear analysis according to Eurocode 2. For reinforcing and profile steels linear elastic – ideal plastic model is applied. The normalized ultimate bending moment determining the resistance of the BH beam is derived by integrating the equilibrium equations of the bending moments about the horizontal axis of the RC core rectangle, taking into account the physical and geometrical relationships. The presented model was verified by tests carried out on two BH beams subjected to bending. The comparisons made indicated good convergence between the analytical solution and the experimental results in ultimate bending moments.



Author(s):  
Katherine Ann Cashell ◽  
Rabee Shamass

Stainless steel is increasingly popular in construction owing to its corrosion resistance, excellent mechanical and physical properties as well as its aesthetic appearance. The current paper is concerned with the use of stainless steel in steel-concrete composite beams, which is a new application.  Current design codes for steel-concrete composite beams neglect strain hardening in the steel. Whilst this is a reasonable assumption for carbon steel, stainless steel is a very ductile material which offers significant levels of strain hardening prior to failure.  Therefore, when current design provisions are applied to stainless steel composite beams, the strength predictions are generally inaccurate. The current study presents a simplified analytical solution that takes into consideration the strain hardening of stainless steel when bending moment capacity is calculated. A finite element model is developed and validated against a number of experimental results for composite beams.  The validated numerical model is then used to investigate the accuracy of the proposed analytical solution. It is concluded that simplified analytical solution is reliable and provides a straightforward design tool for practicing engineers who wish to specify this novel construction form in appropriate applications. 



Sign in / Sign up

Export Citation Format

Share Document