scholarly journals Bending Moment Capacity of Stainless Steel-Concrete Composite Beams

Author(s):  
Katherine Ann Cashell ◽  
Rabee Shamass

Stainless steel is increasingly popular in construction owing to its corrosion resistance, excellent mechanical and physical properties as well as its aesthetic appearance. The current paper is concerned with the use of stainless steel in steel-concrete composite beams, which is a new application.  Current design codes for steel-concrete composite beams neglect strain hardening in the steel. Whilst this is a reasonable assumption for carbon steel, stainless steel is a very ductile material which offers significant levels of strain hardening prior to failure.  Therefore, when current design provisions are applied to stainless steel composite beams, the strength predictions are generally inaccurate. The current study presents a simplified analytical solution that takes into consideration the strain hardening of stainless steel when bending moment capacity is calculated. A finite element model is developed and validated against a number of experimental results for composite beams.  The validated numerical model is then used to investigate the accuracy of the proposed analytical solution. It is concluded that simplified analytical solution is reliable and provides a straightforward design tool for practicing engineers who wish to specify this novel construction form in appropriate applications. 

2020 ◽  
Vol 8 (6) ◽  
pp. 3847-3851

The use of circular hollow sections (CHS) have increased due to its aesthetic appearance and good mechanical properties. This research investigates the behavior of the bolted CHS splices with circular end plates under pure bending moment that allows the use of CHS as long flexural members. Three connections are tested and the corresponding finite element models are constructed. The finite element models are verified with the experimental results and showed acceptable agreement in terms of both ultimate moment capacity and load-displacement curves. Three modes of failure are observed where the first is pure bolt failure, the second is pure end plate yielding while the third is a combination of the two modes where end plate plastifies accompanied by bolt failure. Stiffness is also observed and is found to be greatly affected by the thickness of the end plate


2020 ◽  
Vol 323 ◽  
pp. 01013
Author(s):  
Marek Lechman

The paper deals with the resistance of steel and concrete composite beams, named BH beams, subjected to bending. They are structurally connected with prefabricated or cast in situ slabs, forming floor slab system. The beams under consideration consist of the reinforced concrete (RC) rectangular core placed inside a reversed TT welded profile. The stress-strain relationship for concrete in compression of the RC core is assumed for nonlinear analysis according to Eurocode 2. For reinforcing and profile steels linear elastic – ideal plastic model is applied. The normalized ultimate bending moment determining the resistance of the BH beam is derived by integrating the equilibrium equations of the bending moments about the horizontal axis of the RC core rectangle, taking into account the physical and geometrical relationships. The presented model was verified by tests carried out on two BH beams subjected to bending. The comparisons made indicated good convergence between the analytical solution and the experimental results in ultimate bending moments.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Flávio Alexandre Matias Arrais ◽  
Nuno Lopes ◽  
Paulo Vila Real

PurposeStainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better behaviour under elevated temperatures can also be important in buildings design. In spite of the initial cost, stainless-steel application as a structural material has been increasing. Elliptical hollow sections integrate the architectural attributes of the circular hollow sections and the structural advantages of the rectangular hollow sections (RHSs). Hence, the application of stainless-steel material combined with elliptical hollow profiles stands as an interesting design option. The purpose of the paper is to better understand the resistance of stainless-steel-beam columns in case of fireDesign/methodology/approachThe research presents a numerical study on the behaviour of stainless-steel members with slender elliptical hollow section (EHS) subjected to axial compression and bending about the strong axis at elevated temperatures. A parametric numerical study is presented here considering with and without out-of-plane buckling different stainless-steel grades, cross-section and member slenderness, bending moment diagrams and elevated temperatures.FindingsThe tested design methodologies proved to be inadequate for the EHS members being in some situations too conservative.Originality/valueThe safety and accuracy of Eurocode 3 (EC3) design methodology and of a recent design proposal developed for I-sections and cold-formed RHSs are analysed applying material and geometric non-linear analysis considering imperfections with the finite element software SAFIR.


Author(s):  
Enrico Torselletti ◽  
Luigino Vitali ◽  
Erik Levold ◽  
Kim J. Mo̸rk

The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is a market for using S-lay vessels in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than presently allowed by current regulations/state of the art is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. The scope of the project is to produce a LRFD (Load Resistant Factor Design) design guideline to be used in the definition and application of design criteria for the laying phase e.g. to S and J-lay methods/equipment. The guideline covers D/t from 15 to 45 and applied strains over the overbend in excess of 0.5%. This paper addresses the failure modes relevant for combined high curvatures/strains, axial, external pressure and local forces due to roller over the stinger of an S-lay vessel and to sea bottom contacts, particularly: • Residual pipe ovality after laying, • Maximum strain and bending moment capacity. Analytical equations are proposed in accordance with DNV OS F101 philosophy and design format.


Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


Sign in / Sign up

Export Citation Format

Share Document