Comparison between experimental values and standards on natural stone masonry mechanical properties

2012 ◽  
Vol 28 (1) ◽  
pp. 444-449 ◽  
Author(s):  
David García ◽  
José T. San-José ◽  
Leire Garmendia ◽  
Pello Larrinaga
2013 ◽  
Vol 702 ◽  
pp. 27-30
Author(s):  
Ling Qiang Yang ◽  
Lu Ling Yang ◽  
Rui Gao

The research presented the mechanical properties under compressive loads of a natural stone masonry. The characterization of the basic materials and different stone masonry prisms are included. Sandstone and low strength lime–cement mortar were used for this experimental work. The morphological characteristics of walls were also taken into account, in order to manufacture prism specimens that were as representative as possible of the Chinese typology. The experimental values were compared with the analytical in different masonry.


2014 ◽  
Vol 507 ◽  
pp. 277-280
Author(s):  
Zhong Kai Han ◽  
Ming Liu ◽  
Yin Jun Gao

The research presented the mechanical properties under compressive loads of a natural stone masonry. The characterization of the basic materials and different stone masonry prisms are included. Sandstone and low strength limecement mortar were used for this experimental work. The morphological characteristics of walls were also taken into account, in order to manufacture prism specimens that were as representative as possible of the Chinese typology. The experimental values were compared with the analytical in different masonry.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Francesco Paolo La Mantia ◽  
Maria Chiara Mistretta ◽  
Vincenzo Titone

In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


2021 ◽  
Author(s):  
IVAN GALLEGOS ◽  
JOSHUA KEMPPAINEN ◽  
SAGAR U. PATIL ◽  
PRATHAMESH DESHPANDE ◽  
JACOB GISSINER ◽  
...  

Carbon-carbon composites (CCCs) widely used in the aerospace and automotive industries due to their excellent mechanical and thermal properties. Phenolic resins have a relatively high carbon yield, which makes them a suitable candidate for CCCs manufacturing. Molecular Dynamics (MD) can further reduce costs by predicting properties of a material before manufacturing and testing. In the present work, a Molecular Dynamics (MD) model of a crosslinked phenolic resin was developed to predict mechanical properties by implementing the fix bond/react algorithm in LAMMPS. The predicted mass density (ρ) and Young’s Modulus (E) agree well with experimental values and highlights the validity of the topologybased approach to building stable molecular models of phenolic resins.


2020 ◽  
Vol 12 ◽  
pp. 42-52
Author(s):  
S. A. Muslov ◽  
◽  
A. I. Lotkov ◽  
S. D. Arutyunov ◽  
T. M. Albakova ◽  
...  

A review of studies of the mechanical properties of human and animal heart tissues has been performed. Based on literature data, a form of approximating function is found for the dependence of the Young’s modulus of the ventricles of the human heart on the magnitude of the deformation. The average values of the Young’s modulus and other elastic constants were calculated and compared with the known experimental values. The coefficients C1 and C2 of the two-parameter hyperelastic myocardial Mooney-Rivlin model are calculated.


2014 ◽  
Vol 87 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Roberto Todeschini ◽  
Viviana Consonni ◽  
Davide Ballabio ◽  
Andrea Mauri ◽  
Matteo Cassotti ◽  
...  

ABSTRACT In this preliminary study, mathematical models based on Quantitative Structure Property Relationships (QSPR) were applied in order to analyze how molecular structure of chloroprene rubber accelerators relates to their rheological and mechanical properties. QSPR models were developed in order to disclose which structural features mainly affect the mechanism of vulcanization. In such a way QSPR can help in a faster and more parsimonious design of new chloroprene rubber curative molecules. Regression mathematical models were calibrated on two rheological properties (scorch time and optimum cure time) and three mechanical properties (modulus 100%, hardness, and elongation at break). Models were calculated using experimental values of 14 accelerators belonging to diverse chemical classes and validated by means of different strategies. All the derived models gave a good degree of fitting (R2 values ranging from 84.5 to 98.7) and a satisfactory predictive power. Moreover, some hypotheses on the correlations between specific structural features and the analyzed rheological and mechanical properties were drawn. Owing to the relatively small set of accelerators used to calibrate the models, these hypotheses should be further investigated and proved.


Sign in / Sign up

Export Citation Format

Share Document