Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers

2016 ◽  
Vol 116 ◽  
pp. 63-71 ◽  
Author(s):  
J.L. Vilaplana ◽  
F.J. Baeza ◽  
O. Galao ◽  
E.G. Alcocel ◽  
E. Zornoza ◽  
...  
Materials ◽  
2013 ◽  
Vol 6 (10) ◽  
pp. 4776-4786 ◽  
Author(s):  
Josep Vilaplana ◽  
Francisco Baeza ◽  
Oscar Galao ◽  
Emilio Zornoza ◽  
Pedro Garcés

2016 ◽  
Vol 851 ◽  
pp. 141-146
Author(s):  
Jan Koplík ◽  
Miroslava Smolková ◽  
Jakub Tkacz

The ability of alkali-activated materials (AAMs) to fix and immobilize heavy metals was investigated. Two raw materials were used to prepare alkali-activated matrices – high-temperature fly ash and blast furnace slag (BFS). NaOH served as an alkaline activator. Two heavy metals (Mn, Ni) were added in different amounts to find out the influence of dosage of heavy metal on the mechanical properties of the matrices and the leachability. Leachability was measured as concentration of heavy metals in leachates (ČSN EN 12457-4) by inductively coupled plasma/optical emission spectrometry (ICP/OES). Structure of prepared matrices was characterized by scanning electron microscopy (SEM). Increasing of addition of heavy metals led to decrease of mechanical properties of matrices. The leaching tests showed, that both matrices can immobilize Mn and Ni in dosages of 0.1 – 2,5%. Higher dosages caused deterioration of the matrices and increased the leachability. After alkali activation both heavy metals were transformed into the form of insoluble salts.


2016 ◽  
Vol 851 ◽  
pp. 57-62
Author(s):  
Lukáš Kalina ◽  
Miroslava Hajdúchová ◽  
Markéta Langová ◽  
Vojtěch Enev

The study deals with the preparation process and properties of alkali-activated blast furnace slag with different addition of lignosulphonate plasticizer. The goal of this study is to evaluate the suitability of plasticizer and find the convenient dose of this admixture, which improve the workability and mechanical properties of alkali-activated slag. The stability of plasticizing admixture in alkali environment was studied by infrared spectroscopy (FTIR).


2020 ◽  
Vol 26 ◽  
pp. 30-33
Author(s):  
Jan Horych ◽  
Pavel Tesárek ◽  
Zdeněk Prošek

Recycling of materials is very popular and very important in these days. Finding the new ways to process and use these materials is a key to get rid of a lot of construction waste. The amount of landfilling needs to be reduced. This study observes mechanical properties of the cement composites containing recycled concrete powder and alkali-activated blast furnace slag processed on a high- peed mill as a potential binder replacement up to the 60 wt. %. These materials have a positive effect on hydration process, increase flexural strength. It can reduce compressive strength loss when an amount of cement in the mixture is reduced.


2017 ◽  
Vol 63 (1) ◽  
pp. 22-26
Author(s):  
Pavel Mec ◽  
Lucie Gembalová

Abstract Alkali-activated binders (AAB) are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1307
Author(s):  
Kateřina Strejcová ◽  
Zdeněk Tišler ◽  
Nikita Sharkov ◽  
Martina Michálková ◽  
Kateřina Peroutková ◽  
...  

This study focuses on a comparison of alkali-activated materials based on natural zeolites without and with the addition of blast furnace slag and their subsequent modification by acid leaching. The addition of slag to alkali-activated mixtures is generally used to increase the strength. The subsequent modification of its chemical, textural and mechanical properties by acid leaching makes this material usable in other industries, especially in the chemical industry. This study aimed to examine the influence of the addition of blast furnace slag to alkali-activated mixtures based on natural zeolites and observe the effect of subsequent acid leaching on the chemical, textural and mechanical properties and CO2 adsorption capacity of these materials. The modification of alkali-activated materials was carried out by acid leaching using 0.1 M HCl and then using 3 M HCl. The properties of these materials were determined using N2 physisorption, Hg porosimetry, XRF, XRD, DRIFT, TGA and strength measurements. The results showed that the addition of blast furnace slag significantly increased the cutting-edge strength of the obtained materials and affected the textural properties, especially in leached samples. The presence of blast furnace slag generated a higher proportion of mesopores, which are attributed to the presence of the calcium silicate hydrate (C–S–H) phase and are easily removed by leaching, as shown by the XRF results. The obtained data showed an improvement in properties and extension of the potential applicability of these materials in the chemical industry, especially for catalytic and adsorption applications.


Sign in / Sign up

Export Citation Format

Share Document