Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials

2017 ◽  
Vol 157 ◽  
pp. 1145-1153 ◽  
Author(s):  
Dharamveer Singh ◽  
Srinivas F. Chitragar ◽  
Prabin Kumar Ashish
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1231
Author(s):  
Kuanghuai Wu ◽  
Xiaoyu Liu ◽  
Xu Cai ◽  
Wenke Huang ◽  
Jinlou Yu ◽  
...  

Semi-flexible pavement is widely used in pavement engineering due to its excellent rutting resistance; however, it mainly fails due to cracking. Therefore, it is important to understand the properties of the aggregate–mortar–asphalt interfacial transition zone, to better understand the cracking mechanism of the semi-flexible pavement. In this work, we used pull-off tests and digital image analysis technology to compare and analyze the interfacial tensile strength and granite–bitumen–mortar interactions in three types of asphalt (70# matrix asphalt, PG76-22 modified asphalt and S-HV modified asphalt) at different curing ages. The analysis results showed that, for the three different bitumen materials, with settled mortar, the peak interfacial tensile strength values all occurred at approximately 14 d of curing. In addition, the order of the tensile strength followed the order of asphalt penetration degree; the order of the interfacial water damage resistance from weak to strong was 70# asphalt cementation specimen, PG76-22 modified asphalt cementation specimen, and S-HV modified asphalt cementation specimen. The results of this analysis highlight the original contributions of the optimum curing time for the composite interface of semi-flexible pavement materials prepared with different asphalts to reach optimum crack resistance.


2013 ◽  
Vol 723 ◽  
pp. 434-443 ◽  
Author(s):  
Ainalem Nega ◽  
Hamid Nikraz ◽  
Colin Leek ◽  
Behzad Ghadimi

The use of deep strength asphalt materials characterization to construct and restore the heavily urban roads where damage has been induced is rapidly grown in Western Australia. Five different types of asphalt mixes were produced in laboratory to modify pavement performance mixture. The main role of this research is to evaluate the pavement materials characterization for Western Australia road. In this study, laboratory test for tensile strength, resilient modulus, wheel tracking, binder contents, Marshall Compaction, and air voids contents test were taken to analyze each asphalt mixtures. The results indicated that AC20-75 and AC14-75 asphalt mixes blow were in a good pavement performance as compared to other asphalt mixes. For a mix design purposed, all the asphalt mixes that are used in this study can strength and stable the stiffness of pavement that is notable, and the modification effect rank can be described as AC20-75 Blow > AC14-75 Blow > AC14-50 Blow > AC7-50 Blow > SMA7-50 Blow in this research.


2021 ◽  
Author(s):  
Larissa Strömberg ◽  
Lev Khazanovich ◽  
Staffan Hintze

The need for correctly made comparisons of different pavement materials, regarding cost-efficiency to reduce the climate impact, is increasing, especially in connection with new types of climate-neutral materials, so that sub-optimizations and oblique competition do not arise. Both the Swedish and USA's authorities are beginning to demand the Environmental Product Declaration (EPDs) as a certificate of the pavements' environmental performances from the contractors. There are some methodological difficulties to use the EPDs for comparison of the environmental impacts between different asphalt mixes or between the asphalt- and concrete pavements. This paper has analyzed two new standards which propose to extend the declaration to several aspects of sustainability: technical, environmental and economic performance. In this article, we have investigated if these standards can be used to form a framework to create an extended sustainability declaration of road pavements allowed a multidisciplinary comparison of different materials based on technical performance, Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA).


Author(s):  
Katrein Sauer ◽  
Alexander Rack ◽  
Hawshan Abdulrahman Mustafa ◽  
Mario Thiele ◽  
Ron Shahar ◽  
...  

2004 ◽  
Author(s):  
Leonid B. Glebov ◽  
Larissa N. Glebova ◽  
Vadim I. Smirnov ◽  
Mark Dubinskii ◽  
Larry D. Merkle ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Sign in / Sign up

Export Citation Format

Share Document