scholarly journals Rutting and moisture-induced damage potential of foamed warm mix asphalt (WMA) containing RAP

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.

2013 ◽  
Vol 649 ◽  
pp. 242-245 ◽  
Author(s):  
Alina Mihaela Nicuţă

The evaluation of energy savings in the area of transport infrastructure entails a complex characterization of factors, attitudes and consequences. In the frame of energy saving approach, must be identified sustainable alternatives and solutions for road asphalt pavements production and exploitation. Finding innovative materials is one major objective in this process. In the present paper has been carried out an evaluation of the energetically and environmental benefits of warm mix asphalt (WMA) compositions that incorporate reclaimed asphalt pavement (RAP) and their contribution to roads sustainable development. For a proper analysis and reliable results, have been used the Life Cycle Assessment methodology and asPECT software. WMA integrating RAP are known as energy – saving and environmentally friendly asphalt roads pavements. Analyzed in a comparative perspective with hot mix asphalt (HMA) incorporating RAP, WMA would gain in results due to the decrease in mixing and compaction temperature, energy consumption and emissions but also to the increase in durability, quality and performance. The results of this comparison intended to point out an alternative that would provide an increase in the sustainability of the transport infrastructure sector.


2020 ◽  
Vol 12 (16) ◽  
pp. 6410
Author(s):  
Alejandra T. Calabi-Floody ◽  
Gonzalo A. Valdés-Vidal ◽  
Elsa Sanchez-Alonso ◽  
Luis A. Mardones-Parra

Asphalt mixture is the most widely used material in road construction, and the industry is developing more sustainable technologies. Warm mix asphalt (WMA) is a promising alternative as it saves energy, reduces fuel consumption and generates fewer gas and fume emissions, while maintaining a similar performance to hot mix asphalt (HMA). This paper presents an evaluation of the gas emissions at laboratory scale, as well as the energy consumption and production costs, of five types of WMA with the addition of natural zeolite. The control mixture was a HMA manufactured at 155 °C. The mixtures evaluated were two WMA manufactured at 135 °C with 0.3% and 0.6% natural zeolite, and three WMA with partial replacement of raw materials by 10%, 20% and 30% of reclaimed asphalt pavement (RAP); these mixtures, called WMA–RAP, were manufactured at 125 °C, 135 °C and 145 °C, respectively. The results indicated that all the mixtures evaluated reduced CO and CO2 emissions by 2–6% and 17–37%, respectively. The energy consumption presented a 13% decrease. In the current situation, the production costs for WMA with 0.3 and 0.6% natural zeolite are slightly higher than the control mixture, because the saving achieved in fuel consumption is lower than the current cost of the additive. On the other hand, WMA manufactured with the addition of natural zeolite and RAP could produce cost savings of up to 25%, depending on the amounts of RAP and natural zeolite used.


Author(s):  
Walaa S. Mogawer ◽  
Alexander J. Austerman ◽  
Robert Kluttz ◽  
Michael Roussel

A high-performance thin asphalt overlay (HPThinOL) is specified as having a thickness of 1 in. or less and is used in applications requiring high levels of rutting and fatigue resistance. HPThinOLs are used as a pavement preservation strategy and are placed on pavements that have remaining structural capacity that is expected to outlive that strategy. Current specifications for HPThinOLs generally call for a polymer-modified asphalt (PMA). However, PMA binders are more expensive than unmodified asphalt binders. This expense, coupled with the higher binder content requirement generally associated with HPThinOL, could lead to an initial higher cost in relation to other pavement preservation strategies. Although the higher initial cost can be offset by incorporating high amounts of reclaimed asphalt pavement (RAP), the use of high amounts of RAP in PMA mixtures might adversely affect the mixture performance (stiffness, cracking, or workability). Warm-mix asphalt (WMA) technology may improve the workability of HPThinOL that incorporates high RAP content and PMA binders. This study evaluated the effect of PMA binders, high RAP content, and WMA technology on the stiffness, resistance to reflective cracking, moisture susceptibility, and workability of HPThinOL mixtures. PMA binders and high RAP content increased the stiffness of HPThinOL significantly; however, the use of WMA technology lowered mixture stiffness and improved workability. PMA may improve the cracking resistance, moisture susceptibility, and rutting resistance of high-RAP HPThinOL mixtures, depending on whether a WMA technology is used.


Sign in / Sign up

Export Citation Format

Share Document