Eco-efficient low cement recycled concrete aggregate mixtures for structural applications

2018 ◽  
Vol 169 ◽  
pp. 724-732 ◽  
Author(s):  
Meika Hayles ◽  
Leandro F.M. Sanchez ◽  
Martin Noël
Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2190
Author(s):  
Víctor Revilla-Cuesta ◽  
Marta Skaf ◽  
Ana B. Espinosa ◽  
Amaia Santamaría ◽  
Vanesa Ortega-López

The compressive strength of recycled concrete is acknowledged to be largely conditioned by the incorporation ratio of Recycled Concrete Aggregate (RCA), although that ratio needs to be carefully assessed to optimize the design of structural applications. In this study, Self-Compacting Concrete (SCC) mixes containing 100% coarse RCA and variable amounts, between 0% and 100%, of fine RCA were manufactured and their compressive strengths were tested in the laboratory for a statistical analysis of their strength variations, which exhibited robustness and normality according to the common statistical procedures. The results of the confidence intervals, the one-factor ANalysis Of VAriance (ANOVA), and the Kruskal–Wallis test showed that an increase in fine RCA content did not necessarily result in a significant decrease in strength, although the addition of fine RCA delayed the development of the final strength. The statistical models presented in this research can be used to define the optimum incorporation ratio that would produce the highest compressive strength. Furthermore, the multiple regression models offered accurate estimations of compressive strength, considering the interaction between the incorporation ratio of fine RCA and the curing age of concrete that the two-factor ANOVA revealed. Lastly, the probability distribution predictions, obtained through a log-likelihood analysis, fitted the results better than the predictions based on current standards, which clearly underestimated the compressive strength of SCC manufactured with fine RCA and require adjustment to take full advantage of these recycled materials. This analysis could be carried out on any type of waste and concrete, which would allow one to evaluate the same aspects as in this research and ensure that the use of recycled concrete maximizes both sustainability and strength.


2021 ◽  
Vol 13 (8) ◽  
pp. 4245
Author(s):  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Wojciech Sas

The construction sector is currently struggling with the reuse of waste originating from the demolition and modernization of buildings and roads. Furthermore, old buildings are gradually being replaced by new structures. This brings a significant increase of concrete debris to waste landfills. To prevent this, many studies on the possibilities of recycling concrete, known as recycled concrete aggregate (RCA), have been done. To broaden the applicability of reused concrete, an understanding of its properties and engineering behavior is required. A difficulty in sustainable, proper management of RCA is the shortage of appropriate test results necessary to assess its utility. For this reason, in the present study, the physical, deformation, and stiffness properties of RCA with gravely grain distribution were analyzed carefully in the geotechnical laboratory. To examine the mentioned properties, an extensive experimental program was planned, which included the following studies: granulometric analysis, Proctor and oedometer tests, as well as resonant column tests. The obtained research results show that RCA has lower values of deformation and stiffness parameters than natural aggregates. However, after applying in oedometer apparatus repetitive cycles of loading/unloading/reloading, some significant improvement in the values of the parameters studied was noticed, most likely due to susceptibility to static compaction. Moreover, some critical reduction in the range of linear response of RCA to dynamic loading was observed.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


Sign in / Sign up

Export Citation Format

Share Document