Influence of blocks and grout on compressive strength and stiffness of concrete masonry prisms

2018 ◽  
Vol 182 ◽  
pp. 233-241 ◽  
Author(s):  
Roseli Oliveira Guedes Martins ◽  
Gustavo Henrique Nalon ◽  
Rita de Cássia Silva Sant'Ana Alvarenga ◽  
Leonardo Gonçalves Pedroti ◽  
José Carlos Lopes Ribeiro
Author(s):  
Yue Liu ◽  
Weicheng Gao ◽  
Wei Liu ◽  
Zhou Hua

This paper presents an investigation on the mechanical response of the Nomex honeycomb core subjected to flatwise compressive loading. Thin plate elastic in-plane compressive buckling theory is used to analyze the Nomex honeycomb core cell wall. A mesoscopic finite element (FE) model of honeycomb sandwich structure with the Nomex honeycomb cell walls is established by employing ABAQUS/Explicit shell elements. The compressive strength and compressive stiffness of Nomex honeycomb core with different heights and thickness of cell walls, i.e. double cell walls and single cell walls, are analyzed numerically using the FE model. Flatwise compressive tests are also carried out on bare honeycomb cores to validate the numerical method. The results suggest that the compressive strength and compression stiffness are related to the geometric dimensions of the honeycomb core. The Nomex honeycomb core with a height of 6 mm has a higher strength than that of 8 mm. In addition, the honeycomb core with lower height possesses stronger anti-instability ability, including the compressive strength and stiffness. The proposed mesoscopic model can effectively simulate the crushing process of Nomex honeycomb core and accurately predict the strength and stiffness of honeycomb sandwich panels. Our work is instructive to the practical applications in engineering.


Author(s):  
Gustavo H. Nalon ◽  
Rita de C. S. S. Alvarenga ◽  
Leonardo G. Pedroti ◽  
Marcelo A. Alves ◽  
Roseli O. G. Martins ◽  
...  

2017 ◽  
Vol 10 (6) ◽  
pp. 1273-1319 ◽  
Author(s):  
E. S. FORTES ◽  
G. A. PARSEKIAN ◽  
J. S. CAMACHO ◽  
F. S. FONSECA

Abstract Although the use of high strength concrete blocks for the construction of tall buildings is becoming common in Brazil, their mechanical properties and behavior are not fully understood. The literature shows a gap in experimental studies with the use of high strength concrete blocks, i.e., those with compressive strength greater than 16 MPa. The work presented herein was conducted in order to study the behavior of high strength structural masonry. Therefore, the compressive strength and modulus of elasticity of concrete block walls tested under axial load were assessed. The specimens included grouted and ungrouted walls and walls with a mid-height bond beam; ungrouted walls were constructed with face-shell and full mortar bedding. The walls were built and tested in the laboratory of CESP and in the Structures Laboratory of the UNESP Civil Engineering Department in Ilha Solteira (NEPAE). Concrete blocks with nominal compressive strength of 16 (B1), 24 (B2) and 30 (B3) MPa were used. Ungrouted masonry walls had a height of 220 cm and a width of 120 cm while grouted masonry walls had a height of 220 cm and a width of 80 cm. Traditional Portland cement, sand and lime mortar was used. The testing program included 36 blocks, 18 prisms, 9 ungrouted walls (6 with face-shell mortar bedding and 3 with full mortar bedding), 9 grouted masonry walls, and 12 ungrouted walls with a bond beam at mid-height. The experimental results were used to determine the compressive strength ratio between masonry units, prisms and masonry walls. The analyses included assessing the cracking pattern, the mode of failure and the stress-strain curve of the masonry walls. Tests results indicate that the prism-to-unit strength ratio varies according to the block strength; that face-shell mortar bedding is suitable for high strength concrete masonry; and that 20% resistance decrease for face-shell mortar bedding when compared with full mortar bedding is a conservative consideration. The results also show that using a bond beam at the mid-height of the wall does not lead to a compressive strength decreased but it changes the failure mode and the shape of the stress-strain curve. In addition, the results show that estimating E = 800 fp is conservative for ungrouted masonry walls but reasonably accurate for grouted masonry walls and that there is no reason to limit the value of E to a maximum value of 16 GPa. Furthermore, the results show that, for design purposes, a wall-to-prism strength ratio value of 0.7 may be used for high strength concrete masonry.


2015 ◽  
Vol 61 (4) ◽  
pp. 59-78 ◽  
Author(s):  
F. C. Wang ◽  
W. Song

A study was undertaken to investigate the effects of crumb rubber on the strength and mechanical behaviour of Rubberized cement soil (RCS). In the present investigation, 26 groups of soil samples were prepared at five different percentages of crumb rubber content, four different percentages of cement content and two different finenesses of crumb rubber particle. Compressive strength tests were carried out at the curing age of 7 days, 14 days, 28 days and 90 days. The test results indicated that the inclusion of crumb rubber within cement soil leads to a decrease in the compressive strength and stiffness and improves the cement soil’s brittle behaviour to a more ductile one. A reduction of up to 31% in the compressive strength happened in the 20% crumb content group. The compressive strength increases with the increase in the cement content. And the enlargement of cement content is more efficient at low cement content.


2013 ◽  
Vol 71 (6) ◽  
pp. 795-804 ◽  
Author(s):  
Wouter A. van Beerschoten ◽  
David M. Carradine ◽  
Alessandro Palermo

Sign in / Sign up

Export Citation Format

Share Document