scholarly journals Effects of Crumb Rubber on Compressive Strength of Cement-Treated Soil

2015 ◽  
Vol 61 (4) ◽  
pp. 59-78 ◽  
Author(s):  
F. C. Wang ◽  
W. Song

A study was undertaken to investigate the effects of crumb rubber on the strength and mechanical behaviour of Rubberized cement soil (RCS). In the present investigation, 26 groups of soil samples were prepared at five different percentages of crumb rubber content, four different percentages of cement content and two different finenesses of crumb rubber particle. Compressive strength tests were carried out at the curing age of 7 days, 14 days, 28 days and 90 days. The test results indicated that the inclusion of crumb rubber within cement soil leads to a decrease in the compressive strength and stiffness and improves the cement soil’s brittle behaviour to a more ductile one. A reduction of up to 31% in the compressive strength happened in the 20% crumb content group. The compressive strength increases with the increase in the cement content. And the enlargement of cement content is more efficient at low cement content.

2014 ◽  
Vol 554 ◽  
pp. 128-132 ◽  
Author(s):  
Euniza Jusli ◽  
Hasanan Md Nor ◽  
Putra Jaya Ramadhansyah ◽  
Haron Zaiton

This study provided the test results on the mechanical properties of double layer concrete paving blocks (CPBs) obtained by replacing portions of the conventional aggregate with waste tyre rubber. The mechanical properties discussed in this paper were compressive and flexural strength. Results indicated that the density of double layer CPBs containing rubber was lower than that of conventional CPB. The decrease was found to be proportional with the waste tyre rubber content. Due to the low strength and stiffness of waste tyre rubber particle, the compressive and flexural strength of double layer CPBs containing rubber appeared to be lower than that of conventional CPB.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ping Jiang ◽  
Yewen Chen ◽  
Lin Zhou ◽  
Tianhao Mao ◽  
Wei Wang ◽  
...  

This study investigated the unconfined compressive strength change law of cement modified slurries (CMS) under different curing ages. We conducted unconfined compressive strength tests using slurry and cement as raw materials. The cement contents were 5%, 10%, 15%, 20%, and 25%. The curing ages were 7, 14, 28, 56, 90, 120, 150, and 180 d. A time effect model of CMS strength was established based on the measured UCS strength-curing age and the strength-cement content curves. The test results proved that the UCS of the CMS increased significantly with an increase in the curing age, and after 90 days, the UCS gradually increased to a fixed value. The time effect model better characterized the relationship between the UCS of the CMS and the curing age and the cement content, as the predicted value had a high correlation with the measured value. We conducted scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) tests to analyze the microstructure and chemical composition of the CMS. The microscopic test results demonstrated that the increase of cement content and curing age increased the amount of gelling substances in the CMS and made the overall structure more compact, thereby increasing its macro strength.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Weidong Jin ◽  
Zhe Wang ◽  
Yongming Ai ◽  
Chenyang Liu

The unconfined compressive strength of cement-modified silty sand in Jilin Province was investigated in this study. For this purpose, various tests were conducted, including the screening test, compaction test, CBR test, X-ray fluorescence detection, and unconfined compressive strength test. Effects of compaction degree, soil quality, water quality, cement content, and curing age were considered. The results show that CBR value is positively correlated with compactness. Two kinds of different water qualities have little effect on unconfined compressive strength of cement-improved soil; with the increase in cement content, the unconfined compressive strength increases, and the power function equation established by the two is significantly correlated. The logarithmic relationship between cement-soil strength and curing age is approximately linear. Through regression analysis, the comprehensive characterization parameters of cement-soil strength, such as water-cement ratio, cement content, and curing age, are put forward. The unconfined compressive strength of cement-modified silty sand has a good power function relationship with the comprehensive characterization parameters, and the fitting degree between the strength prediction formula and the existing research and test data exceeds 90%, which verifies the effectiveness of the comprehensive characterization parameters.


2021 ◽  
Vol 13 (6) ◽  
pp. 3558
Author(s):  
Wei Wang ◽  
Hang Zhou ◽  
Jian Li ◽  
Feifei Tao ◽  
Cuihong Li ◽  
...  

In order to explore the modification effect of carbonization time on nano-MgO-modified cement soil, unconfined compressive strength tests of nano-MgO-modified cement soil with carbonization times of 0 h, 6 h, 1 d, 2 d and 4 d were carried out. A method for normalizing the stress–strain curve was proposed, and the influence of nano-MgO content and carbonization time was investigated from the three aspects of compressive strength, peak strain and energy dissipation. The test results show the following: (1) The compressive strength of the modified cement soil can be significantly improved by adding 1.0% nano-MgO and after 1 d carbonization. (2) Under the same nano-MgO content, the peak strain of the modified cement soil after 2 d carbonization reaches the maximum, which can significantly increase its ductility. However, the nano-MgO content has little influence on the peak strain of the modified cement soil. (3) Under the same nano-MgO content, the energy dissipation rate of the modified cement soil after 1 d carbonization reaches the maximum, which can better resist the damage of external load.


Author(s):  
Theodore Gautier Bikoko ◽  
Jean Claude Tchamba ◽  
Valentine Yato Katte ◽  
Divine Kum Deh

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30 % on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10 % by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2019 ◽  
Vol 814 ◽  
pp. 399-403
Author(s):  
Anuchit Uchaipichat

This paper presents the relationship between the dynamic cone penetration (DCP) test results and the unconfined compressive strength of lateritic cemented soils. A series of DCP tests and unconfined compressive strength was performed on lateritic cemented soil. The soils sample used in this study was lateritic soil. The test results for the DCP tests are presented in terms of penetration index. It can be observed that the penetration index decreased with increasing curing period and cement content. Moreover, the unconfined compressive strength of cemented soils increased with curing period and cement content. The relationship between unconfined compressive strength and penetration index is presented. A unique relationship for unconfined compressive strength can be obtained.


2005 ◽  
Vol 32 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
Ashraf M Ghaly ◽  
James D Cahill IV

Waste rubber tires that cannot be processed for useful applications are numbered in the millions around the world. The build up of old rubber tires in landfills is commonly considered a major threat to the environment, and it is unquestionably a burden on landfill space. This research project was an investigation into the possibility of using fine rubber particles in concrete mixtures. The experimental testing program was designed to study the effect of the addition of crumb rubber, as replacement of a portion of fine aggregates (sand), on the strength of concrete. Rubber was added to concrete in quantities of 5%, 10%, and 15% by volume of the mixture. Three different water/cement ratios were used: 0.47, 0.54, and 0.61. A total of 180 concrete cubes were made. The cubes were tested in compression at 1, 7, 14, 21, and 28 d with the load continuously and automatically measured until failure. The load values were used to calculate compressive stress as related to different rubber contents and water/cement ratios. Compression test results were used to develop several plots relating rubber content and water/cement ratio to compressive stress of concrete. Test results gathered in this research project indicated that the addition of crumb rubber to concrete results in a reduced strength as compared with that of conventional concrete. Based on the experimental results, correlations have been developed to estimate the reduction in concrete strength as a function of the rubber content in the mix.Key words: compressive strength, concrete, crumb rubber, rubberized concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


2014 ◽  
Vol 584-586 ◽  
pp. 917-920
Author(s):  
Gang Xue ◽  
Chun Feng Wu

Applying modified waste rubber particle to surface mortar can give full play of the unique characteristics to utilize the waste and decrease environmental pollution. In order to study the application performance of crumb rubber mortar, five different mortar proportions are selected to determine the compressive strength, flexural strength, impact strength and thermal aging strength. The results show that rubber particles mortar possess excellent toughness, impact resistance and heat aging properties.


2019 ◽  
Vol 1 (2) ◽  
pp. 47-53
Author(s):  
Seno Aji ◽  
Teguh Satria Mahlindo ◽  
Sari Anggraini

This study aimed to determine the effect of oil palm fronds addition as a mixture to the mechanical properties of bricks in terms of porosity testing, and compressive strength, and to determine the proper percentage of oil palm frond additions. This research is a type of experiment with a randomized block design (RBD) arranged non-factorial and the data is processed using the SPSS 20 Tukey test program. This study used a brick-shaped sample with a length of 19 cm, a width of 9.5 cm and a height of 4.5 cm. Variations in the composition of the added oil palm fronds are 0%, 5%, 10%, 15%, and 20%. Parameter mechanical properties of bricks included porosity, and compressive strength tests. The addition of oil palm fronds with a composition percentage of 0% to 10% affected the mechanical properties of the bricks by reducing porosity and increasing the compressive strength of the bricks. Based on the test results obtained by each of the best test values, namely the minimum porosity value achieved in the percentage of oil palm fronds as much as 10%, which is 18.4%. The optimum compressive strength value is achieved on the percentage of oil palm fronds as much as 10% which is equal to 20.5 N / mm².


Sign in / Sign up

Export Citation Format

Share Document