Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill

2019 ◽  
Vol 213 ◽  
pp. 313-324 ◽  
Author(s):  
Shuai Cao ◽  
Erol Yilmaz ◽  
Weidong Song ◽  
Elif Yilmaz ◽  
Gaili Xue
2012 ◽  
Vol 232 ◽  
pp. 24-27
Author(s):  
Zong Zhan Li ◽  
Jun Lin Tao ◽  
Yi Li

This paper makes the acoustic emission of granite under uniaxial compression and splitting tensile test by electro-hydraulic testing machine and AE .We studied the relationship of uniaxial compressive strength and splitting tensile strength with the loading rate and AE characteristics of granite .The results show that uniaxial compressive strength and peak strain raise with loading rate, the AE energy gradually increases and get maximum in the 30% of the peak stress in the process of uniaxial compression test, and in the splitting tensile AE energy generates in the initial loading and gets maximum when the granite brittle fracture.


2021 ◽  
Vol 887 ◽  
pp. 116-122
Author(s):  
A.A. Bryansky ◽  
O.V. Bashkov ◽  
Daria P. Malysheva ◽  
Denis B. Solovev

The paper presents the results of the study of registered acoustic emission (AE) parameters during static deformation and damaging of polymer composite materials (PCM). Mechanical tests were done by a static tension and a static three-point bend, accompanied by an acoustic emission method. The assessment of the loading rate effect on defects formation processes was done by additional static tension test at rate equal half of recommended by the standard and static three-point bend test at rate ten times lower than that calculated by the standard. Clustering by frequency components of the recorded AE signals with a self-organizing Kohonen map was performed. The characteristics of the types of PCM structure damage by the centroids of the obtained clusters are given. Based on the clusters accumulation during mechanical tests, the stages of damage formation for static tension and static three-point bend, the loading rate effect on the process of damage formation are described.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Han Meng ◽  
Yuzhong Yang ◽  
Liyun Wu ◽  
Fei Wang ◽  
Lei Peng

Briquette coals with different cement contents are frequently used to study the coal body’s properties. In this study, the deformation and strength of briquette coal samples with 0, 5, 10, and 20% cement contents were experimentally and theoretically investigated using the acoustic emission (AE) characteristics monitored during the uniaxial compression tests. The results show that the uniaxial compression process of raw coal and briquette coal samples can be subdivided into compaction, elastic, plastic (yield), and brittle failure stages. With an increase in cement content, briquette coal samples undergo the elastic and plastic stages, and their postpeak stress drop rate gradually grows, and their plastic deformation is followed by brittle failure. The uniaxial compressive strength and elastic modulus of briquette coal samples show a linearly increasing relationship with cement content, while their Poisson’s ratio decreases gradually. During the uniaxial compression, raw coal and briquette coal samples produce the AE signals. The overall AE signal of briquette coal samples is relatively low, and there are no obvious AE events in raw coal samples. The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of briquette coal samples with a 20% cement content and their AE signal cumulative amplitude, count, and energy values are very close to the corresponding parameters of raw coal samples. Therefore, they can be used for simulating raw coal samples in laboratory tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Shuncai Li ◽  
Daquan Li ◽  
Nong Zhang

Due to the heterogeneity of the internal structure and the different external loading conditions, the mechanical and acoustic emission (AE) characteristic parameters of coal and rock are discrete in the process of loading until failure, and many repeated and destructive tests need to be completed to obtain the performance parameters. It is of theoretical significance to explore the correlation of various parameters and to establish multiparameter regression models of coal rock strength and AE characteristics for predicting the strength and acoustic emission characteristic parameters of coal rock and reducing the repeated tests. For the coal sample from a coal seam of Longde Coal Mine in China, the mass density of coal samples and the acoustic velocity in the samples before loading are measured at first, and their respective coefficient of variation is analyzed. Then, the stress-strain curve and the time history curve of AE characteristic parameters are obtained by the uniaxial compression AE test of each coal sample according to the different loading rates. The influence of loading rate, mass density, and acoustic velocity on the mechanical and AE energy parameters of coal sample is analyzed by the section morphology of the coal sample after failure, the three-dimensional location map of AE, and the scanning micrograph of the electron microscope. Based on the least-square method, the multiple regression models of compressive strength, elastic modulus, and the maximum AE energy are established by mass density, acoustic velocity, and loading rate of coal samples. The results indicate that, for the coal samples from the same geological source, the obtained regression models can, respectively, predict the uniaxial compressive strength, elastic modulus, and the maximum AE energy according to the predesigned loading rate, the acoustic velocity, and mass density of coal samples measured before loading, without too many repeated loading failure tests.


2011 ◽  
Vol 396-398 ◽  
pp. 217-220
Author(s):  
Bing Xie ◽  
Jin Jun Guo ◽  
Xiang Xia

Numerical specimens with ramdom joints is established by particle flow code PFC2D and uniaxial compression tests are conducted under three different loading rate. Studies have shown that strength of uniaxial compression are all increased with the loading rate no matter what specimen is complete or with random joints. The sensitivity of changes of uniaxial compressive strength of specimen with random joints decreases with increasing of the loading rate.


Sign in / Sign up

Export Citation Format

Share Document