Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges

2019 ◽  
Vol 224 ◽  
pp. 930-949 ◽  
Author(s):  
Yanguang Wu ◽  
Bowen Lu ◽  
Tao Bai ◽  
Hao Wang ◽  
Feipeng Du ◽  
...  
2003 ◽  
Vol 33 (9) ◽  
pp. 1437-1441 ◽  
Author(s):  
Zhihua Pan ◽  
Dongxu Li ◽  
Jian Yu ◽  
Nanru Yang

2014 ◽  
Vol 18 (sup2) ◽  
pp. S2-784-S2-787 ◽  
Author(s):  
Y. F. Gong ◽  
Y. H. Fang ◽  
Y. R. Yan ◽  
L. Q. Chen

2018 ◽  
Vol 8 (9) ◽  
pp. 1537 ◽  
Author(s):  
Gaili Xue ◽  
Erol Yilmaz ◽  
Weidong Song ◽  
Shuai Cao

With the use of glauberite mineral (GM) and sodium hydroxide (SH) alkaline catalysts to stimulate slag powder’s internal cementation activity and incorporate the two fine-grained solid wastes, such as quicklime (Q) and desulfurized ash (DA), a new cementitious material suitable for mine tailings was developed to replace traditional ordinary Portland cement (OPC) for reducing cement-related costs. A series of uniaxial compressive strength (UCS) tests were carried out on cemented tailings backfill (CTB) samples containing different activators. The results showed that (1) the highest UCS values of 14-day and 28-day cured CTB samples were 1.259 MPa and 2.429 MPa, respectively, and the effect of different activator types was in the order of SH > GM > DA > Q and SH > GM > Q > DA; (2) the relationship between UCS and activator dosages followed the function y = ax3 − bx2 + cx − d. Compared with the OPC 32.5 R cemented samples, the minimum strength growth factor was 1.45, and the maximum reached 2.03; (3) the optimal proportion of DA slag formula was 4.5% or 5.0% Q, 19% DA, 2.5% GM, and 0.7% SH. The aforesaid new cementitious materials met the mine’s UCS requirements with a relatively low cost (17.04–17.20 €/ton) and solved the stacking problem of solid wastes on the surface well. Ultimately, this study provides a useful reference for the development of mineral binders.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4456 ◽  
Author(s):  
Wu Jing ◽  
Jinping Jiang ◽  
Sha Ding ◽  
Ping Duan

Due to the low hydration activity and poor volume stability, extensive steel slag utilization is restricted. In this paper, the hydration process and microstructure of alkali-activated materials with steel slag as a cementitious material and fine aggregate were studied. The phase composition and micro-morphology of hydration products were measured using XRD, NMR and SEM. The response relationship between microstructure and mechanical properties during hydration was revealed. The results show that the main hydration products of the alkali-activated steel slag powder-granulated blast furnace slag powder cementitious system are Ca(OH)2 and calcium aluminosilicate hydrate (C-A-S-H) gel. With the progress of hydration, the amount of calcium silicate hydrate (C-S-H) gel and the average molecular chain length increase, Al[4]/Si decreases, while C/S increases first and then decreases, and the structure of cement paste becomes much more compact. The interface between steel slag sand and cement paste is denser than that of river sand, since the hydration occurs on the surface of steel slag sand, which leads to the formation of C-A-S-H gel and Ca(OH)2. As a result, the compressive strength of concrete prepared by steel slag sand is higher than that of river sand with the same mix proportion.


Sign in / Sign up

Export Citation Format

Share Document