Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics

2020 ◽  
Vol 262 ◽  
pp. 120723 ◽  
Author(s):  
Xin Chen ◽  
Jiangshan Li ◽  
Qiang Xue ◽  
Xiao Huang ◽  
Lei Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1617 ◽  
Author(s):  
Hyeonseok Jee ◽  
Jaeyeon Park ◽  
Erfan Zalnezhad ◽  
Keunhong Jeong ◽  
Seung Min Woo ◽  
...  

In recent years, nano-reinforcing technologies for cementitious materials have attracted considerable interest as a viable solution for compensating the poor cracking resistance of these materials. In this study, for the first time, titanium nanotubes (TNTs) were incorporated in cement pastes and their effect on the mechanical properties, microstructure, and early-age hydration kinetics was investigated. Experimental results showed that both compressive (~12%) and flexural strength (~23%) were enhanced with the addition of 0.5 wt.% of TNTs relative to plain cement paste at 28 days of curing. Moreover, it was found that, while TNTs accelerated the hydration kinetics of the pure cement clinker phase (C3S) in the early age of the reaction (within 24 h), there was no significant effect from adding TNTs on the hydration of ordinary Portland cement. TNTs appeared to compress the microstructure by filling the cement paste pore of sizes ranging from 10 to 100 nm. Furthermore, it could be clearly observed that the TNTs bridged the microcracks of cement paste. These results suggested that TNTs could be a great potential candidate since nano-reinforcing agents complement the shortcomings of cementitious materials.


2021 ◽  
Vol 293 ◽  
pp. 123514
Author(s):  
Soukaina Ajouguim ◽  
Jonathan Page ◽  
Chafika Djelal ◽  
Mohamed Waqif ◽  
Latifa Saâdi

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 508
Author(s):  
Lilan Xie ◽  
Min Deng ◽  
Jinhui Tang ◽  
Kaiwei Liu

To rationally use low-grade phosphorous limestone as the raw materials for cement production, the influence of phosphorous introduced by fluorapatite during the clinker calcination process on the mechanical properties of cementitious materials is investigated. Hydration kinetics, phase evolutions, and microstructure of cement pastes have been studied by using calorimetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results indicate that the mechanical properties of cementitious materials can be slightly improved due to the mineralization effect of the small amount of phosphorous in the clinker and significantly decreased with an increase of phosphorous. High content of phosphorous will reduce the content of C3S and make the formation of α′-C2S-xC3P(x: 0–0.05), whose hydration reactivity is rather lower, such that on the one hand less-hydrated products, such as calcium silicate hydrate (C-S-H) gel, can be obtained, and on the other hand, the hydration reaction will be slowed by severely prolonging the induction period. Interestingly, small particles can be observed on the surface of hydration products, but no new phase can be detected by XRD. When the content of P2O5 is 2.0%, the cement can meet the requirements of P·II 42.5 cement in China. Hopefully, this can provide significant guidance for the use of cement prepared by fluorapatite as raw material.


2021 ◽  
Vol 266 ◽  
pp. 121096 ◽  
Author(s):  
Haoxin Li ◽  
Zhi Xue ◽  
Guangwei Liang ◽  
Kai Wu ◽  
Biqin Dong ◽  
...  

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document